srdnEannusﬁAM
STEPPER MOTOR CONTROLLER

3F:CY500MAN.004 30 AUGUST]988 KM PRINTED IN U.5.A.

This manual contains advance

product information of which certain

details are subject to change.

Cybernetic Micro Systems, Inc. software products are copyrighted
by and shall remain the property of Cybernetic Micro Systems,
Inc. Duplication is subject to a license from Cybernetics.
Cybernetic Micro Systems, Inc. reserves the right to improve
design or performance characteristics. Cybernetic Micro Systenms,
Inc. assumes no responsibility for the use of any circuitry other
than circuitry embodied in Cybernetic products. No other circuit
patent licenses are implied.

Information furnished by Cybernetic Micro Systems, Inc. 1is
believed to be accurate and reliable. However, no responsibility
is assumed by Cybernetic Micro Systems, Inc. for its use, nor for
any infringements of patents or other rights of third parties
which may result from its use. No license is granted by
implication or otherwise under any patent or patent right of
Cybernetic Micro Systems, Inc. Further, Cybernetic Micro
Systems, Inc. reserves the right to revise this publication and
to make changes from time to time in the content hereof without
obligation to notify any person or organization of such revision
or changes; and Cybernetics assumes no responsibility for any
errors which may appear in this document and makes no commitment
to update the information contained herein.

The following are trademarks of Cybernetic Micro Systems, Inc:

Bin-ASCII
CYMEL

Analog-ASCII
ASCII-analog

Copyright 1983 by CYBERNETIC MICRO SYSTEMS, INC.
All rights reserved; no part of this publication may
be reproduced without the prior written permission of

Cybernetic Micro Systems, Inc.

Box 3000 = San Gregorio CA 94074 USA

Tel: §50-726-3000 - Fax: B50-T26-3003
ww. ControlChips.com
info@ControlChips.com

arrays.

WA
XTAL

RESET
LINUSED
ABORT

]
UNUSED
[RESERVED)
CLK/15
08,
DB,
DB,

0
:
0B,
DB,
DB,

P

STANDARD FEATURES

STORED PROGRAM
STEPPER MOTOR CONTROLLER

ASCI-DECIMAL OR BINARY COMMUNICATION
SINGLE 5 VOLT POWER SUPPLY

HI-LEVEL LANGUAGE COMMANDS

STORED PROGRAM CAPABILITY
HALF-STEP/FULL-STEP CAPABILITY
ABSOLUTE/RELATIVE POSITION MODES
PROGRAMMABLE VIA ASCI KEYBOARD

3300+ STEPS PER SECOMND (8 MHz XTAL:
PROGRAMMABLE OUTPUT LINE

TWC INTERRUPT REQUEST OUTPUTS

PIN CONFIGURATION

IRRERRRRARIRCYARNTY

2 2

Ly
a0

CY500

STORED
PROGRAM
STEPPER

MOTOR

CONTROLLER

i +5 YOLTS

- 45 VOLTS

== WAIT [PROGRAM)
b—s=— [NT REQ 1

- TOGELE

|—s= PLLSE

—*= CONTROL

— RSCI/BIN

—= RN |INT REQ 2]

== PHOGE

tet— THIGEER

i— EXT DIRECTION
bai— EXT START/STOP

——BOBY/ROY

— 5 YOLTS

— UNUSED
=34 STEPPER

=3 | MOTOR

[ORIVE

===, | SIGNALS

CyberneticMicro Systems

® CYBERMETIC MICRO SYSTEMS 1881

PRINTED M LLS.A.

The CY500 stored program stepper motor controller is a standard
5 volt, 40 pin LS| device configured to control any 4-phase stepper
motor. The CY500 will interface to any computer using asynchronous
parallel TTL input and provides numerous TTL inputs and outputs for

auxiliary control and interfacing. The CY500 allows programming with an ASCII
keyboard for prototype development and allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed upon command. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor

HARDWARE/SOFTWARE DIRECTION CONTROL
HARDWARE/SOFTWARE START/STOP

‘ABORT CAPABILITY

SINGLE/MULTIPLE STEP INSTRUCTIONS
RAMP-LIP/SLEW/RAMP-DOWN MODE

24 INSTRUCTIONS IN SET

TRIGGERED OPERATION

‘DO-WHILE' COMMAND

WAIT-UNTIL" COMMAND

SEVERAL SYNC INPUTS AND OUTPUTS

LOGIC DIAGRAM

" & B 8 & & & & ¥ @

..._..;1 B WOLT
PARALLEL K
DATA BUS 8
gt STEPPER
WR STROBE 3 CONTROL
T s e PULSE
BUSY/READY —=—v—d o= TOGELE
mope — INTREQ T
GONTROL MOTIOM COMPLETE
EXT. DIR. PROGAAM COMPLETE
EXT. START/STOP ———ff PAGS ENTHY
DO-WHILE ——jmt B
RBOAT T T
TRIGRER = PAOGRAMMABLE
WAIT UNTIL OUTPUT
RSCI/BIN

TABLE OF CONTENTS

Section 1

INTRODUCTICN TC THE CY500
CY500 Stored Program Stepper Motor Controller.....eseeeenssss 6
Stored Program Peripheral Controller....cissirisossssssnvsss oo?
Custom Device GeneratioN....-c-sececcsncancnsan T T e ey
Architecture of the CY500 Stepper CONELOL L@ e venaceannsossns 8
Input and Output Data SUbLSYStEMS.essssrssssarsnsansssnsssnasns S
Program Parameter Storage......ceceaa. TR T I N 9
Mode Flags BENA PLI G com v e s s mmmw e dmnie e N
18 Byte Program Buffer...cessnsssssscsssriosssnnsnssnssncsns o9
Instruction Decoding and Control....cvivnececnces e B e 9
Pogition. Baglabar . Jiieseive oo sbenis s metis s e sme s s s 2
Keyboard Programmable DevicB....ciiccnnsscsaaas SRR W 9

Section 2
OVERVIEW OF PIN FUNCTIONS

HDSt Cgmunication with CYSGDI - & & & & & & & & B & & B F S E e FF AR 11

Synchronization MechanismS....eeeecencssesscans R TR e 11

CYS00 Pinout Diagramiiirssseiiiosissvasnevinsie sinasusanenn 13

CY500 Pin Description......cciviaiiiavaeniaaasa SR R e e 14
Section 3

OVERVIEW OF COMMAND LANGUAGE

BIN=-ASCII{TM) FEature. .scsvesnsssssansssssnsnnsshaensnasansss +16
High-Level Language Deslgn Facilitates Programming........--lﬁ
CY500 Command SUNMAILY..:ceusssss R 1 S S A 18
Description of Commands......ccu... A AR R T e 19

Section 4
DETAILED EXAMPLES OF COMMANDS

Reset Command (Initialize)......... e g oy o 24
Program Execution Mode: "RUN" Mode Operation...........cees. 24
Home Position........... B o e P G O 24
DIreotion CoMELOL s vivns sas 6asvasass s i sn s erm P 25
Absolute vs. Relative Position. A R e T e .25
Commanding the CY500 During "JOG" ‘Mode of Uperaticn.........zﬁ
Program Looping, Iteration........... T 26
Unconditional Program Looping.......c.cccveven. LR S g 27
Conditional Program Looping-{Do...While. ..}..... censennd?
Imbedded Conditional LOOP...c... e e e e 28

Section 5

BINARY MODE OF OPERATION
Binary Data Mode.oeeeescncnonnanannnnsansss .
Internal Program StOrage......sevessassansnsnns ssenrasaanans 31
CYS500/HOST Interface Diagram.........eeceecassa R e 31
Interface Example. ... coerennsssnansnssansssnnas S —, 32

Section &
TIMING AND CONTROL INFORMATION

Parallel Handshake Timing Sequence.......ccceovnverrns G 33
CY500 Timing and Control Signals...... I A A O 33
DOITNOW (Run) Timing..... D — o T 34
Program Synchronization MachaniSmB.icitirdarevnveunsia A 34
Trigger Operatiom. s wiesvvs s siasee e R AR Or s
The ABORT SeqUENCE. . .csararransssnnses R S A IR |
ABORT Timing Diagram....seeesecsncaa A e eresssIB
External Control.c.cccassasasssstbbnrbrennnrennesanssss ewaas e
Internal/External Direction Control.....eeeeeescnceacscnanras 37
External Direction Control...isievvreinsncravensscnaas A a7
Stop/Start Operation..ccveveeverronnns T pam—— G 37
External Start/Stop Operation......... N R R P Ll 1Y
Step Timing BignalB.isiiveciasarnnnones R P i g i dand
Half Step or Full Step.......... PErssE s s R b e diare e

Section 7

STEF RATE INFORMATION
Rate Control......euas S N PR [
Rate Table...iiseeaaanannnass N B R i, B L
Bate Divisor Pactor..sssrssencnnneynss g R R S R PP
Special Rates......... N T R e e e e e e b
Variable Rate Control........... e e R RN S
Ramping Mode of Operation........ R R RPN
Constraints on Slew Mode.....oeuua. R B el R R BB e
Display of Ramped Operation........... S e e
Ramp Rate Timing Examples......vcvvusn waasae ves s s e enna S e A
Slew Mode Operation.......... kb sesaaans B ——
Slew Mode Example........ iy e e S AT S P emaan
Closed Loop Control..cissssnnnnncssnss PP P

Section 8

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings.......seeeeaa e TR
DOperating CharacteristicS...cccviaaansses R R T
Electrical Conventions........ S o o
Reset Circultry...ciecrnnncnnsnoas R B R
Clock Circuits........ T T T W AP | |

Section 9

CIRCUITS AND EXAMPLES
Test Demonstration Circuit.......... O SR W PRSP .
CYB-002 Multi-Purpose Control Board........... T R
Bandghake Protodol....ssiisisasssavvins R R e B R A
Operation of Several CY500s Using a Common Data Bus.......-.-
Synchronization of Two CY500s........ s S R AR T R e S
Driver Circuit Considerations....-c.cecveenannnsanss e A
R5-232-C Receive Only Interface D351gn. ssssrisaassaana
FROM Stand-Alone Interface Design..... R P S
EEPROM Stand-Alone Interface Design............ e

4

Section 10
COMPUTER CONTROL OF THE CY500

Enter/Quit Program Mode......cevuunsnnce=s St R wTe i S 69
CYS00 Stand-Alone Applications......ceesessssssarsrns e e 71
Programming EXampleS....ccccssssrearenssnsansnncnacsssss 0 §
Equate Table and Port AssignmentsS........-svsvesssss R 72
Binary Data Programming Example.....ccvveeesnsnnnsns RN 73
Section 11
IEEE-488 INTERFACE
IEEE-488 Interface to CY¥500..... 0t enannnn- S SRR 77
GPIE Handshake Signalg..cs:cessssvinsenaeaianss R R . 77
GPIB Interface Management Signals........ccieiecccrcervansns P
Section 12
GETTING YOUR CY500 RUNNING
Start-up PrDCEdurE nnnnnnnnnnnnnnn & BB oE R oE R oE oEE om o= WO R OEEE B FEF RS 81
APFENDICES
ASCII-Decimal to Hex Conversion Table.......cvveeennsncsnsns B3
CYS12 Dats Sheel . visalisiiiadsiionsansniaiasssmnmrey A 84
Manufacturers of 4-Phase Steppar MOtOXSB.censnnncnnss - R W A BC

1 INTRODUCTION TO THE CY500 1

The CY500 is an ASCII-programmable peripheral controller chip
designed to control stepper motors using an instruction sequence

that may be stored internally in a program buffer. This feature
allows the user to program the device with an ASCII keyboard and
vastly simplifies prototype development and experimentation. When
the user decides that the control sequence is correct, the ASCII
keyboard is replaced by a computer output port, and the motor
can be brought on-line. 0Of course, the computer can be used
initially in those systems in which keyboard programming is
impractical, but most applications can usually benefit from™ the
immediacy of the keyboard during the development phase. In this
mode the user simply types a command on the keyboard and the
controller takes the appropriate action. In the Command Mode, the
controller simply executes the command. In the Programming Mode,

the command is stored in sequence in the on-chip program buffer
for later execution.

Early stepper motor controllers consisted of bulky boxes
controlled by switches and buttons. Step rates were set in
hardware, as were the acceleration and deceleration
characteristics. Switches were used to set the number of steps
and direction of stepping. Buttons were used to actually start
the motion. These controllers were obviously meant for manual

operation. They were very expensive, ve heavy, and very large
when compared to the motors to be controlled.

In the next stage of controller design, the functions of the
controller boxes were designed onto single PC boards. These
significantly reduced the cost and packaging regquirements, but
did not increase the capability of the controller. One important
benefit of this design was the ability to simulate switch inputs
electronically, allowing another machine to command the
controller. Pulse-to-step translator modules, still popular
today, are also designed in this format. They require pulse and
direction inputs, and translate these signals into the driving

waveforms for the motors. Some translators also incorporate
acceleration and deceleration capabilities.

Figure 1.1 Controller evolution, boxes to boards to chips.

The next design phase reduces the random logic of the translator
modules into a small number of integrated circuits. About the
same time these chip sets became available, the low cost computer
came into fashion. It became a natural source of input signals
to run the stepper motor controller chip set, providing a pulse
train to the translator meodule. If the loading of the motor was
such that acceleration and deceleration was required, then the
computer provided the timing of the pulses to affect the
acceleration. If, further, the position control required complex
motions that were relative to either the current location or to
some absolute coordinate system, then the computer also provided
these calculations. If the sequence of motions was to be
synchronized with other external events, the computer provided
such synchronization. At this point, the control of motion
became a non-trivial problem, and the programming of a computer
to provide this control represented a major design effort. 1If
not one, but many, motors were to be controlled, the problem
became even worse, and guickly exceeded the capabilities of the
low cost computer.

At this point the single-chip stepper motor controller was
introduced, culminating the controller evolution by placing all

the control logic into a single part. The advantages of a single
controller I1.C. are increased system flexibility and reliability,
and decreased overall systems cost.

The CY500 Stored Program Stepper Motor Controller not only
contains the timing logic of the earlier bulky designs, it also
offers parametric control over step rate, acceleration rate,
numbers of steps, and direction of stepping. 1In addition, an
internal program buffer can be used to store commands and repeat

complex motions, and secondary control lines allow these motions
to be synchronized with events external to the motor itself. The

central computer can now easily control several motors and take

care of system level tasks, while a smart controller handles the
details of running each motor.

A STORED PROGRAM PERIPHERAL CONTROLLER

The Cybernetic Micro Systems CY500 Stored Program Stepper Motor
Controller is the first peripheral controller device to offer the

user stored program capability. This feature significantly

increases the power of the device and, as a consequence,
decreases the amount of host time and software reguired to
perform a given task. Stored program devices operate in three
basic modes:

1. Command execution

2. Program entry
3. Program execution

In addition to the command execution mode common to all

peripheral controllers, the stored program controller can be
placed in a PROGRAM ENTRY mode in which the sequence of commands
is entered and stored in the program buffer, and then the device

can be placed in the PROGRAM EXECUTION mode in which stored
sequences of commands are executed.

CUSTOM DEVICE GENERATION

In many applications the user will find that the CY500 can

function as a stand-alone device, completely independent of the
host processor, except for program loading. In most of these
applications, it may be possible to generate custom devices that

load the desired program upon power-up and are triggered by
external devices. The user can then employ these custom
controllers in stand-alone applications with no host.

ARCHITECTURE OF THE CY500

The CY500 architecture may be partitioned into several functicnal
subsystems:

1. Input data subsystem

2. Output data subsystem

3. Program parameter storage

4. Mode flags and pins

5. 18 byte program buffer

6. Instruction

selac;inn,
decoding.,

and control,
mechanisms.

7. Position register

Figure 1.2 Schematic diagram
of architecture of the CYS500
Stored Program Stepper Motor
Controller.

Input and Qutput Data Subsystems

The input data system accepts commands from the host (or
keyboard, as described in a later section). The output data
subsystem holds the output control signals to the stepper drive

Eircuitry and includes the associated toggle and pulse timing
ine.

Program Parameter Storage

The program parameter storage subsystem is used to store the step
rate parameters, ramp rate parameter, and to maintain a 16-bit
gcsition register. The position register is incremented (or

ecremented) when stepping in the clockwise (or CCW) direction.
The position register is used when ABSOLUTE position commands are

specified. The 1l6-bit step counter is used when RELATIVE
commands are employed. The contents of the position register

change with every step, while the step counter register contents

remain unchanged until a specific command is used to change them.
The mode flags and mode select pins are used during command

execution to perform the appropriate action or to interpret data
or input signals correctly.

Mode Flags and Pins

The mode flags and mode select pins are used during command
execution to perform the appropriate action or to interpret data

or input signals correctly.

18 Byte Program Buffer

The CY500 contains an 18 byte program buffer that allows the user
to store a sequence of instructions that can be executed upon

command. This provides all of the benefits of stored program
eXxecution that have made computers such powerful tools.

Instruction Decoding and Control

This subsystem performs the actual execution of commands.

Position Register

The CY500 contains a 16-bit position register that can be used to
determine the current location. The CY500 will accept relative
and absolute position commands; however, the position register

always indicates absoclute position.

KEYBOARD PROGRAMMABLE DEVICE

The CY500 Stepper Motor Controller offers HI-LEVEL LANGUAGE
programming with an ASCII keyboard. This design allows the user

maximum utility via the closest possible coupling and facilitates
interactive prototype development and debugging. Note that the

stored program capability makes it possible in many cases to
gerfect the operation of the stepper motor completely decoupled

rom the host computer. In such cases, the host processor is
required to do little more than load the programs at appropriate
times. Of particular importance in many applications is the
dynamic stability of the system. By programming a range of test
conditions through the keyboard, the designer may exercise the
system over broad ranges and thus characterize the system
dynamically. ©Of course, any designer with access to an easy-to-
use, interactive host computer can achieve everything that the
keyboard user can, and more. Lacking such systems, the designer
will appreciate the extreme power of keyboard programming during
prototyping phases, thus postponing until final systems

integration the slower, costlier, host computer programming
associated with all host-controlled controller devices.

ASCI-DECIMAL DATA BUS

BTEFPER
MOTOR |
CONTROLLER [

CRANVER VOLTAGE

Figure 1.3 Prototype Development System.

10

2 OVERVIEW OF PIN FUNCTIONS 2
HOST COMMUNICATION WITH CY500

The host can issue commands to the CYS500 using a parallel data
format. In parallel operation, complete handshaking operation
occurs via the use of a BUSY/RDY line on the CY500, and the WRite
strobe line, WR, from the host. The handshake protoccl is shown
in Figure 2.1.

DATA FROM DATA BUS VALID DATA
HOST to CY500 FROM HOST ON DATA BUS
HOST WRITE WR £ %
SIGNAL to CY500 FROM HOST | = \
AR /
__.-,

LY
STEPPER RDY RDY/BUSY N J _
PIN TO HOST FROM CYS500 _ | %L__J

Figure 2.1 Handshaking protocol for C¥500 in parallel input
mode.

PROGRAM SYNCHRONIZATION MECHANISMS

Most stepper motors are employed as parts of functional systems.
These systems often must synchronize the behavior of the various
subsystems to each other or to a real-world occurrence, such as
an operator input. The CY500 has been designed with both signal
emitters and detectors to allow easy synchronization of the
device to neighboring (interacting) subsystems.

The motor interface for the CY500 is very simple, consisting of
seven output signals. Since the controller is designed for four
phase motors, there is a signal line for each phase,. The
patterns necessary to operate the motor in a full step or a half
step mode, including sequencing for proper direction, appear on
the phase outputs. A simple L/R type driving circuit may be
connected directly to the phase outputs, so the motor can be run
from the controller signals. Alternatively, the user could drive
a more sophisticated pulse-to-step translator, using the CY500
Pulse outputs. The Pulse line gives one pulse at the beginning
of each step.

Figure 2.2 Motor Interface

11

The computer or data interface of the CY500 is alsc very simple.
Commands and parameters are passed from the command scurce to the
CY500 on an eight bit data bus. Data transfer between the
command source and the CY500 is controlled by a standard two-line
handshake protocol. The master processor waits for the CY5Q00
BUSY/READY line to go high, indicating that the CY500 is ready
for the next command byte. Data may then be placed on the bus,
and data available is indicated by a high-to-low transition of
Write. Data should remain stable until the CY500 indicates data
accepted by a high-to-low transition of the BUSY/READY line.
During this busy time, the CY500 is processing the character just
received. The master processor should then raise the Write line
and wait until the CY¥500 is ready for the next data byte. The
simplicity of the data transfer handshake, combined with the
ASCII command structure of the CY500, allows the commanding
device to be any of a number of things, including a
microprocessor or other computer, a keyboard for manual command
entry, or a ROM for fixed, stand-alone applications. The
keyboard is especially useful during prototype development or

system characterization.

VALID DATA
DATA BUS ON DATA BUS -

WRITE Z -
BUSY/RDY \

\'h-.) F
DB R} e BUSY/RDY |/ R | I

Figure 2.3 Data interface and handshake waveform.

Since most stepper motors are parts of functional systems,
requiring that various parts of the system stay synchronized with
each other, the CY500 has been designed with a number of
secondary input and output control lines. These signals may be
used to modify and control the stepping behavior of the device,
or indicate certain conditions within the controller, Two inputs
control the stepping behavior directly. While Trigger is high,
the controller will not step. Stepping is resumed when the
signal goes low again. This signal may be used to halt a motion
under emergency conditions, or to slow the step rate if the motor
cannot keep up. Abort signal is used to stop the motion. Two
other inputs modify the way a program is executed. The Wait line
is used to suspend a program until the signal level on that line
is in a certain state. Commands allow the program to wait for
either a high level or a low level, making it possible to
synchronize on either transition of the line. The External
Start/Stop input is used with the conditional lcoop command.
While the line is low, the CY500 will loop back to the beginning
of the program, repeating the program section over and over.

When the line goes high, the controller will continue with the
rest of the program.

12

TRIGGER

ABORT MOTIOM COMPLETE
WALT RUM
%55 COMTROL

Figure 2.4 Secondary control inputs and outputs.

The CY500 also provides a number of output signals which may be

used by other parts of the system.

When the CY500 has stepped

for the number of steps specified, the Motion Complete(INT REQ 1)

signal indicates the end of the current motion.
is used to indicate that a program is executing.
the CY500 provides an uncommitted output control,

may apply as needed.
two commands,

one for a high output,

Run{INT REQ 2)
In addition,

which the user

The level on this ocutput is controlled by
and the other for a low

output.
W — 1 40 I-ﬂl—--*l'i'I"I!II.TE
. ? 19— *5 YOLTS
AL T D 18 fe— WAIT (PROGRAM)
RESET —» | 4 37 |—= INT REQ | (PROG COMPLETE)
UNUSED ——— 5 38 —» TOGELE®
ABORT —= | 6 35 |— PULSE
e 34— coNTROL
Rp -t | 8 31— ASCH /BTN~
UNUSED —— | 8 chnﬂ 32 |—- AR (INT RED 2)
(RESERVED) w—— | 10 11— FROE
CLKfIS5a—— | 11 10 p=— TATEGER
08, —= |12 P%%IT!EADM 29 fe— EXT OIRECTION
e v gove B e-mREm,
g: 1o |} CONTROLLER Go T R
-
08, —= | 16 15 |—— UNUSED
ﬂE; — 17 i | —I‘@.
0B, —p= |1} ntE—49, ETHETFJI“
0B, —Lle |18 12 |—= &, [DRIVE
o |2 21 |—» &,] SIENALS
Figure 2.5 CY¥500 Pin Configquration.

NOTE: The CY512 Stepper Motor Controller is compatible with the
CY500 with the following exceptions:

PIN# CY500 C¥512
33 (input) ASCII/BIN select (output) EXT DIR indicator
36 (output)} TOGGLE {input) ASCII/BIN select

10 unused
29 (input) EXT DIRECTION
39 unused

(output) parallel write strche
(output) SLEW indicator

(input) I/0 SELECT

13

TABLE I

CY500 PIN DESCRIPTION

DESIGNATION PIN# FUNCTION

VCC (input) 40 +5 volt power supply.

vDD ({input) 26,39 +5 volts.

VSS (input) 7,20 circuit GND potential.

XTaLl ,XTAT2 2,3 inputs for crystal or external
{input) clock (not TTL). See Clock

CLK/15 (output)

RESET (input)

DBO-DB7 (input)

d1-d4 (output)

WR (input)
BUSY/READY
{output)

RD {output)

ASCII/BINARY
(input)

PROG (output)

Circuits section.

11 this output represents the clock
signal divided by fifteen,
independent of all operating modes.

The pulse width is at least 400
nancseconds.

4 initializes controller to power-up
state.
12-19 parallel ﬁa£a bus.
21-24 stepper drive signals.
1 write strobe from host to initiate

command input when writing to CY¥500.

27 handshake line for command data

input. Host must wait until Read
state is indicated by a high leve

before transferring command or data
to CYS500.

8 the Read Strobe occurs during data

input. The data on the bus must be
valid until the trailing edge of RD
oCcCurs.

33 selects ASCII-decimal or binary
mode of operation.

31 indicates program entry mode.

Commands are entered but not
executed while pin 31 is low.

{continued)

- 14

{continued)

TABLE I CY500 PIN DESCRIPTION

DESIGNATION PIN# FUNCTION

RUN (INT REQ 2} a2 indicates program execution mode.

{ PROGRAM COMPLETE) Commands cannot be entered while

{output) program is executing (pin 32=low).

MOTION COMPLETE 37 signal to interrupt host at end of

(INT REQ 1) (output) stepping.

EXT START/STOP 28 controls starting/stopping of

(input) stepper motor if in external
start/stop control mode via the J
command., If running a program, the
pin is tested when the T command is
encountered in the program. If
low, program will continue looping,
if high, program will exit loop and
fetch next instruction.

WAIT (input) 38 program waits for this pin to go
LOW when wait UNTIL instruction is
executed, and waits for it to go
HIGH when the WAIT command is
encountered.

TOGGLE (output) 36 timing signal; toggles with each
new step.

PULSE (output) 35 5 microsecond pulse at beginning of
each step.

TRIGGER (input) 30 used to trigger each step when low
and inhibits stepping when high.

EXTDIR (input) 29 selects direction (HI=CW, LOW=CCW)
if external direction control is
selected via LEFTRIGHT command L.

ABORT (input) 6 stepping motion is aborted when low.
Next command in program is executed.
Must be tied high if not used.

CONTROL (output) 34 user programmable output pin may be
used for any purpose.

UNUSED 5,9,10,25 must remain disconnected.

15

3 OVERVIEW OF COMMAND LANGUAGE 3
BIN-ASCII™ FEATURE

The CY500 user-orientation has not been accomplished at the
expense of complicating the host programming job. For example,
the ASCII-decimal integers typed by the user at the keyboard may
not be readily available in the host programming language. For
this reason the CY500 can be placed in a binary mode in which
binary number parameters are used instead of ASCII-decimal. This
allows any computer with binary integer arithmetic to send
commands and binary information to the controller. The CY500 is

placed in either the binary or the ASCII-decimal mode via a mode-
select input pin setting.

The use of ASCII instruction and ASCII-decimal integer parameters
allows the user to type commands in familiar high-level language

formats, as shown belows:

N 738) ;set Number of steps = 738
Gj ;Go (begin stepping)

where N is the ASCII command specifying NUMBER of steps to take.
The ASCII space character is shown as " ", and the decimal number

738 is then entered, followed by the carriage return key, } = ODH
which terminates the commands. The GO command is entered as G).

The controller then steps the motor for 738 steps. Other
parameters, such as rate, may be specified in similar fashion.

Although the use of ASCII decimal numbers is ideal for the user

for use with BASIC or other languages that can output ASCII
decimal numbers, it is, of course, desirable that the controller
accept binary number parameters from binary computations. For

this reason, the CY500 Stepper Controller may be placed in a
BINARY mode via a strap, or mode-select, pin. In this mode, all
numbers are interpreted as binary data {(as are all commands).

HI-LEVEL LANGUAGE DESIGN FACILITATES
PROGRAMMING

The primary characteristic of all hi-level languages is their
problem-oriented nature as opposed to the device-oriented nature

of machine languages. A secondary characteristic is their ASCII
representation, and a third characteristic of most hi-level

languages is their use of the ASCII-decimal numbering system as

natural numbers. In all of these aspects, the CY500 qualifies as
4 single chip HI LEVEL LANGUAGE DEVICE. The combination of hi-
level language and ASCII-keyboard programmability is designed to

maximize user ease and convenience.

16

Every instruction entered in the ASCII decimal mode of operation
consists of one of the following forms:

1. Alphabetic ASCII character followed by the } (RETURN) key.

2. Alphabetic ASCII character followed by blank, then ASCII
decimal number parameter, then } = 0DH.

Examples of type one are as follows:

HAME . COMMAND INTERPRETATION

ATHOME A} DECLARE ABSOLUTE ZERO LOCATION
BITSET Bj SET PROGRAMMABLE OUTPUT LINE
CLEARBIT Cy CLEAR PROGRAMMAELE OUTPUT LINE
DOIT D) DO PROGRAM (BEGIN RUNNING PROGRAM)
ENTER E) ENTER PROGRAM MODE

Examples of type two are as follows:

NAME ASCIT COMMAND INTERPRETATION

NUMBER N n} DECLARE NUMBER OF STEPS TO BE TAKEN
{RELATIVE)

RATE R r}) DECLARE MAXIMUM RATE PARAMETER

FACTOR F £) DECLARE RATE DIVISION FACTOR

SLOPE S s) DECLARE RAMP RATE

POSITION P p; DECLARE TARGET POSITION (ABSOLUTE)

17

TABLE II CY500 COMMAND SUMMARY
ASCIT NAME INTERPRETATION

CODE

A ATHOME SET CURRENT LOCATION EQUAL ABSOLUTE ZERO
B BITSET TURN ON PROGRAMMABLE OUTPUT LINE

i CLEARBIT TURN OFF PROGRAMMABLE OUTPUT LINE

D DOITNOW BEGIN PROGRAM EXECUTION

E ENTER ENTER PROGRAM CODE

F FACTOR DECLARE RATE DIVISOR FACTOR

G GOSTEP BEGIN STEPPING OPERATION

H HALFSTEP SET HALFSTEP MODE OF OPERATION

I INITIALIZE TURN OFF STEP DRIVE LINES, RESET CONTROLLER
J JOG SET EXTERNAL START/STOP CONTROL MODE

L LEFTRIGHT SET EXTERNAL DIRECTION CONTROL MODE

N NUMBER SET NUMBER OF STEPS TO BE TAKEN (RELATIVE)
o) ONESTEP TAKE ONE STEP IMMEDIATELY

P POSITION DECLARE TARGET POSITION (ABSOLUTE)

Q QUIT* STOP SAVING PROGRAM, ENTER COMMAND MODE.

ALSO QUIT STEPPING. *NEVER FOLLOWED BY)

R RATE SET RATE PARAMETER

S SLOPE SET RAMP RATE FOR SLEW MODE OPERATION

T LOOP TIL LOOP TIL EXTERNAL START/STOP LINE HI

u UNTIL STOP EXECUTING UNTIL WAIT LINE IS LOW

W WAIT STOP EXECUTING UNTIL WAIT LINE IS HIGH

X EXPEND TIME DELAY FOR SPECIFIED MILLISECONDS

+ CW SET CLOCKWISE DIRECTION

- CCW SET COUNTERCLOCKWISE DIRECTION

@ COMMAND STOP PROGRAM EXECUTION, ENTER COMMAND MODE

18

Aj

B)

C)

Dy

E)

Fy

G)

DESCRIPTION OF COMMANDS

o100 0001 | 1 byte

The ATHOME instruction (sets the position) defines the
Home position. This position is absolute zerc and is
reference for all POSITION commands. The ATHOME command
must not be immediately preceded by a change-of-direction
command. Note also that the ATHOME command should not be
used twice unless the CY¥500 is reset or initialized between
commands,

BITSET [0100 0010 | 1 byte

This instruction causes the programmable output pin (#34) to
go HIGH. This is a general-purpose output that may be used

in any fashion.

CLEARBIT |0100 0011 | 1 byte

This instruction causes the programmable output pin (#34) to
go LOW. The user can signal locations in a program seguence
to the external world via B and C instructions.

DOITNOW |0100 0100 | 1 byte

This instruction causes the CY500 to begin executing the
stored program. If no.program has been entered, the
controller will return to the command mode. If the program
exists, the controcller will begin execution of the first
instruction in the program buffer. If the run (DOITNOW)
command is encountered during program execution, it restarts
the program (however, the initial parameters, and modes, may
have changed) and may be used for looping or cyclic
repetition of the program.

ENTER (0100 0101 | 1 byte

This instruction causes the CY500 to enter the program mode
of operation. All commands following the ENTER command are
entered intoc the program buffer in sequence.

FACTOR f 0100 0110 2 bytes
b7 b0

The FACTOR command causes the rate to be decreased by the
factor (1/f). The factor, f, is a number from 1 to 255.

GO command [0100 0111 | 1 byte

The GO command causes the stepper motor to step as specified
by the rate, direction, etc., commands entered prior to the
GO command.

19

H)

I}

J)

Ly

0}

HALFSTEP command | 0100 1000 | 1 byte

The HALFSTEP command causes the CY500 to enter the halfstep

mode and remain in that mode until the device is reset or
reinitialized.

INITIALIZE (0100 1001 | 1 byte

The INITIALIZE command causes the CY500 to enter the command
mode., None of the distance or rate parameters are altered.
Any commands following I will be executed with the
parameters specified prior to I. The INITIALIZE command,
when encountered during program execution, halts the program
execution and returns the system to the command mode. This
command de-energizes the stepper motor coils.

JOG 0100 1010 | 1 byte

The JOG command places the CY500 in the external start/stop
control mode where the starting and stopping are controlled
by external hardware and not by the software GO command.
The J command is applied after the rate, mode, and direction
parameters have been specified, although new parameters may
be entered after Jjogging has started. Applying a low
voltage to the XSS pin causes the motor to begin stepping
and continue stepping as long as pin #28 is low. The Quit
command ends Jog mode. Note that the J command and the T

command are mutually exclusive; one or the other, not both,
may be used. See JOG in Section 4 for more details.

LEFT/RIGHT pin enable |0100 1100 | 1 byte

This instruction places the CY500 in the external direction
control mode. In this mode, the External Direction Pin
(#29) is used to determine the direction, either clockwise
(1) or counter-clockwise {@). Software commands + and - are
ignored in this mode. Any change of control signal applied
following the output pulse will be used to determine the
direction of the next step.

NUMBER of steps 0100 1110 3 bytes
a7 a0 L3bytes
b7 b0 MSbytes

The NUMEER command is used to specify the number of steps to
be taken in the Relative mode of operation. The argument
may be any number from 1 to 64K. Note that this parameter
is stored as 2 bytes in the program buffer.

ONESTEP 0100 1111 | 1 byte

The ONESTEP command is used to take a single step. The
steps are untimed, and the step rate is determined by the
rate at which O commands are received. In addition, each
step may be triggered externally via the TRIGGER pin.

20

P p)

POSITION 0101 0000 3 bytes
a7y al
b7 O

The POSITION command declares the Abspclute mode of
operation. The argument is treated as the target position

relative to position =zero. The ATHOME command can be
used to define position zero.

QUIT (Programming) |DlDl DGDLJ 1 byte

NOTE: The QUIT command is self-terminating, and should NOT
be followed by the Linend }.

The QUIT command causes the CY500 to exit the Programming
mode of operation wherein instructions are stored in the
program buffer in the order received, and to return to the
Command mode of operation in which instructions are executed
as they are received. Note that the Q command is not
terminated with the Linend character, ODH = j, and such
termination may result in incorrect operation. The QUIT

command is alsoc used after program completion prior to
entering new parameters.

RATE rate 0101 0010 2 bytes
b7 b

The RATE instruction sets the rate parameter that determines
the step rate. The rate parameter, r, varies from 1 to 253
corresponding to step rates from 50 to 3350 steps/sec
(assuming a rate factor of 1 and a 6 MHz crystal). The rate
is non-linear and can be computed from the rate equation or
from Table III. For crystals other than & MHz the step rate

should be multiplied by f£/6MHz, where f is the crystal
freqguency.

SLOPE 0101 0011] 2 bytes
a7 a0

The SLOPE or slew mode of operation is used when high step
rates are reqguired and the initial locad on the motor
prevents instantaneous stepping at such rates. In such
cases, the load is accelerated from rest to the maximum rate
and then decelerated to a stop. The user specifies the
distance of total travel (via N instruction), the maximum
rate (via R), (FACTOR is forced to 1 automatically), and
the ramp rate or change in rate parameter from step to step.
When executing in the SLOPE mode, the CY500, starting from
rest, increases the rate parameter by s with each step until
the maximum (slew) rate is reached. The device computes the
"re-entry" point at which it begins decelerating (with

acceleration = =s8) until it reaches the final position.
NOTE: The user is responsible for insuring that N >

2(maxrate). The S command may be used only with N nj, it
will not work with P p).

21

Ty

U}

(0101 0100 | 1 byte

The T command prowides a Do...While... capability to the
CY500. This command tests pin 28 and, if low, it executes
the DOITNOW command, i.e., it runs the program from the
beginning (although using the latest rate, position, etc.,
parameter). If pin 28 is high, the next instruction is
fetched and executed. Note that pin 28 is also used for
external start/stop control when J (JOG) is executed. T and
J are therefore mutually exclusive and can not be used
together.

PARAMETER m%?"r"drarn; ei':ﬁ eier
ENTRY mpﬁmzf? 7

‘D’ fr i fernal
Wit i hagg;:ugyd rom externa

Execute Stored Program

%ﬁhﬁﬁh ;mwguhﬁs parameters

B kom0

n ram
from f:ﬁ

if P = L4,
else contfinuve
exgcuting
pregram

FETCH NEXT IHSTRUCTION
IN PROGRAM

Example: Loop TIL command use.

wait-UNTIL [0101 0101 | 1 byte

The wait-UNTIL instruction is used to synchronize the

rogram execution to an external event. When the U
instruction is executed it tests the WAIT pin. When the
WAIT pin goes low, the next instruction is fetched from the
program buffer and execution proceeds.

22

¥}

+)

o)

B e T

PROGRAM

EXECUTION

"" (WAIT UNTIL)

CONTINUE
|| PROGRAM EXECUTION

Example: wait UNTIL command use.

WAIT command [6101 o111] 1 byte

The WAIT instruction is the opposite of the U command. WAIT
test the WAIT pin (#38) for a high level. The program will
stop until the pin is high, then it will continue with the
next command, Note that the U command may be used to detect
the falling edge of the WAIT line signal, and the W command
may be used to detect the rising edge. Thus, it is possible
to synchronize program execution to either one or both of
these transitions.

EXPEND command 0101 1000 3 bytes
a7 a0 L3byte
b7 bO MSbyte

The EXPEND command will time delay for the number of
milliseconds specified by its argument. The delay is
calibrated in milliseconds, using A 6 MHz crystal. Other
frequencies will require a linear scaling for the actual
delay time. Since this is a 3 byte command (16 bit argument)
the delay time can range between 1 msec and about 65.5 sec
at 6 MHz. This command is useful in programming a delay
time between stepping motions.

CLOCEWISE command 0010 1011 1 byte

All steps following this command will be taken in a
clockwise direction.

CCW command [0010 1101 | 1 byte

All steps following this command will be taken an a counter-
clockwise direction.

COMMAND mode [0011 0000 | 1 byte

The CY500 is placed in the command mode and the next command
is executed as it is received.

23

4 DETAILED EXAMPLES OF COMMANDS4
| RESET COMMAND (INITIALIZE)

The I or Initialize command resets all pointers to the power-up
state and restores the flags to this state. BSpecifically, the
program is erased and the command mode entered. The direction is
clockwise (CW). Note that this command de-energizes the stepper
coils. If this effect is undesirable, an external latch should
be used to latch the four stepper control outputs using the pulse
line (pin 35) to clock the latch.

EXTERMAL DE-ENERGIZE COMMAND

Figure 4.1 An external latch on the stepper control outputs
prevents de-energizing of stepper drive coils when
CY500 is reset via hardware or software and also

allows an external control line to de-energize the
coils independently of the CY500.

PROGRAM EXECUTION MODE

Once a program has been entered in the program buffer, it may be
executed with a run or DOITNOW (D) command. This code has been

assigned the ASCII value D = 44H, It is the last command to be
entered prior to program execution. It is a normal command in

the sense that it is terminated with a LINEND, } = ODH.

HOME POSITION

The ATHOME command, A, is used to declare the Home position,
assigned absolute value zero. MNote that the ATHOME command
should not be immediately preceded by either +) or -}); i.e. by
geither direction command. Note also that the ATHOME command
should not be used twice unless the CY500 is reset or initialized
between commands.

24

DIRECTION CONTROL

The control of the direction of motion may be obtained in either
of two ways. The default mode of operation is that in which the

user specifies either + (CW) or - (CCW) wvia software instruction.
The system powers up in the clockwise direction. Note that the

direction commands are separate commands; they are terminated by
the carriage return character, }=DDH. Thus, to specify 100 steps

in the counter clockwise direction it is necessary to send two
commands :

}
N 100,
instead of sending:

N-100)

The second method of controlling direction is via the L command
which instructs the CY500 to test the External Direction control

line (pin 29) to determine stepping direction.

ABSOLUTE vs RELATIVE POSITION

The CY500 default mode is the relative position mode in which

total travel is specified relative to the current position via
the NUMBER (of steps) command, N nj), where 0<n<2/® -1. In this

mode an internal counter is decremented for each step (or half

step if appropriate) and stapping continues until the count
reaches zero (or another Halt condition is detected). If the

POSITION mode command, P p}, is received, the number of steps P

is interpreted as absolute position with respect to the zero
location declared by the ATHOME command. A three command

sequence is required to step in the absolute position mode.

First the target position is entered with the P p} command.
Next, the stepping direction is set via the + or = command.

Finally, stepping is initiated with the G command. After moving

to the specified position, the system reverts to the relative
mode. You may not use ramping with absolute position motions.

POSITION
EVENT MODE DESCRIPTION
RESET REL hardware initialization
I REL software initialization
P pj ABS absolute position command
INT REQ1 REL rel mode set when motion complete

25

COMMANDING THE CY500 DURING “dOG” MODE
OF OPERATION

The CY500 may be commanded while actively stepping by using the
jog command. In particular, the following commands may be useful
while the CY500 is in motion. (At higher step rates the command

exXxecution may introduce some jitter into the stepper control
outputs.) ;

1. CLEARBIT will reset the control output {(pin 34).

2. BITSET will set the control line (pin 34).
3. + will set CW if in internal direction mode.

4. = will set CCW if in internal direction mode.

5. I will initialize the system, resetting the XS5 mode to

off and disabling the stepper control outputs $1-$4. If
this is undesirable, these outputs can be latched using
the Pulse Line to clock an external latch as shown in

figure 4.1.

6. L will set the external direction control.

7. H will set the halfstep mode. Ej} followed by Q will
stop the motion, clear the XSS mode (restart with Jy)

and will strobe PROG.
8. 0 will stop the XSS mode (restart with J}).

9. TRIGGER stops the motion, TRIGGER releases it.

10. R will dynamically change the stepping rate.

The MOTION COMPLETE (INT REQ 1) goes low in XSS mode when either
X85S or TRIGGER is used to stop motion.

PROGRAM LOOPING;, ITERATION

One consequence of stored program execution is the use of program
10085 or program repetition. If the run (DOITNOW) command of the
CY500 is included as a program: instruction, the program executes
again beginning with the first instruction (but using the latest
value of parameters set before the DOITNOW instruction was
encountered). In this fashion, rather complex seguences of
motions may be repeated without host intervention or
interruption. Conditional looping may be accomplished with a Do
While type instruction that continues looping until a condition
is fulfilled.

26

Unconditional Program Looping

If the DOITNOW command, D is encountered in the program entry

mode, it is stored in the program buffer with the rest of the
progranm. When this instruction is encountered during the
program execution, its effect is to begin program execution
again, and therefore may be used to achieve cyclical looping if
desired. However, program execution may be aborted wvia the RESET
line.

Conditional Program Looping-(Do...While...)

The ability to repeatedly execute a program until an external
event occurs provides a unique Do...While... capability for the
CY500. The T command (loop TIL) is used as shown in the
following example.

Do {the preceding program) While (Pin 28 is low), then proceed to

execute the remaining program instructions. Note that the
program can (but need not) end with a DOITNOW instruction to
provide a conditional loop inside of an unconditional loop:

m— PLRAMETER
d ENTRY N n) gset number of steps = n
=1 PROGRAM
" DOIT NOW” el E} enter program mode

EXECUTE +) set CW direction

IMMER LDOF
IHSTRUCT
UCTIONS R rl) set rate = rl

CONDITIONAL LOOP

Gy begin stepping
| 50 e —
L -) set CCW direction
IR hconpimonAL R r2) set rate = r2
G) go (same n)
T loop TIL pin 28 goes HI
B) set control output line
i - TIME
L your Py return to command mode
..—....._._._i CRRETRCE 0 guit progam mode
Figure 4.2 Conditional Loop D} begin executing program

27

R rl) set rate parameter

E) enter program mode

N nl} set first distance

+}) set CW direction

G) take nl steps

-) set CCW direction

N n2) distance parameter

G) take n2 steps

T} repeat TIL pin #28 = HI
B) set output HI (pin 34)
R r2} set new rate

D) repeat program

Q exit program mode

Dy begin executing program

PARAMETER
ENTRY
] PROGRAM

" DOWHILE*] RUN PROGRAM

REMAIMING
PREOGRAM

EXIT RUH
MODE

(spEciFY) n
TIME
%S5 HILE |_
IMPUT (PIN2E) = .
PROG ROL l'_"'
BUTPLIT (PIM 34}
.m—]“ P
Figure 4.3

Conditional Loop Imbedded
in an Unconditional Loop.

OPERATIONAL MODE SUMMARY

IMmODE DESCRIPTION| MODE®* MODE 1 MODE SELECTION VIA
START/STOP CONTROL | INTERNAL® EXTERMAL ‘J COMMAND SELECTS EXTERNAL CONTROL
DIRECTION CONTROL | INTERMNAL® EXTERMNAL ‘L' COMMAND SELECTS EXTERNAL CONTROL
DATA TYPE ASCI DECIMAL | BINARY (PIN 33 = HI/LO)} (ASCI/BIN)

STEP COMMAND MULTI-STEP |SINGLE-STEF 'G' COMMAND SELECTS MULTI, ‘0" COMMAND
SELECTS OMESTEP

FPOSITION TYPE RELATIVE'™ ABSOLUTE™ ‘N COMMAND SELEGTSHHEL.&TI"JE. ‘P COMMAND
SELECTS ABSOLUTE

STEF MODE FULL-STEP*** |HALF-STEP ‘H' COMMAND SELECTS HALFSTEP

ACCELERATION STEPPED™™" RAMPED 5 COMMAND SELECTS SLOPE FOR ACCELERATION

GATED OPERATION TRIGGERED MON-TRIGGERED | PIN 30 LO |F NO TRIGGERING, STEP ON HI-TQ-LO
TRANSITION

EXECUTION COMMAND PROGRAM ‘D" COMMAND SELECTS DO PROGRAM, ‘8" SELECTS

COMMAND MODE

*MODE @15 DEFAULT MODE IF DEFAULT EXISTS
**ABSOLUTE MODE SET VIA EACH 'POSITION COMMAND, ELSE RELATIVE MODE IN EFFECT.
***RETURN TO DEFAULT MODE OMLY BY RESET (HARDWARE) OR 'INITIALIZE' COMMAND {SOFTWARE).

Figure 4.4 Operational Mode Summary.

28

5 BINARY MODE OF OPERATION D
BINARY DATA MODE

To facilitate control via microprocessors using binary
arithmetic, the CY500 can be placed in the BINARY data mode of
command execution via the application of a low voltage to pin 33.
The possibility of the QUIT command occurring in the binary data
necessitates the use of a data count sent after each command
byte. In binary mode the QUIT command QO=51H may be inadvertantly
transmitted since some of the binary Position or Rate data may
assume this value. For this reason it is necessary to specify
the number of bytes of binary data to be sent to the CY500. 1In
this mode, the data count and data values are specified in binary
fnfm, while the command letters retain their equivalent ASCII
values.

Commands are issued by first sending the command letter, which
has the same value as in ASCII mode. This is followed by a

binary value data count. The data count represents th number of
data bytes to follow the command byte. If the command is a
single letter with no parameter, such as A, B, or T, the data
count will be zero, indicating the end of the command. This is
similar to sending the command letter and a carriage return in
ASCITI mode. Note that the data counts are not ASCII characters,
they are binary values. Commands with parameters in the range 1
to 255 will have a data count of binary 1, since these values can
all be specified in a single byte. Rate, Slope, etc. listed in
Table III are in this category. The data count is then followed
by the single byte which is the binary value desired for that
parameter. Commands such as Position, Number, etc., listed in
the table, will have a data count of binary 2, since their
parameters cannot be specified in a single byte. The data count
is then followed by the two bytes which represent the 16-bit
value for the parameter. Note that 16-bit values are sent least

significant byte first. All commands except QUIT are of the form
shown in Table IITI.

TABLE III ALLOWED BINARY COMMANDS AND DATA COUNT FOR EACH
DATA
COMMAND EBYTE COUNT DATA BYTE 1 DATA BYTE 2
H,BrC;D,E: ;
G,H,1,J.L,0 | @ .se s —
T,U,W,+,-,0 |
F:,R,S 1 { Factor,Rate,Slope e
N,P,X 2 Number of Steps Gﬂ Target Position

29

Note that the QUIT command is not followed by a data count in the
Binary mode, just as it is not followed by a carriage return 1in

the ASCITI mode. Also, it is possible to load an entire program
with a single byte count value, To do this, issue the ENTER
command with a data count value of zeroc, followed by the first
command character of the program. Instead of following this
character by the normal data count, use a count egual to the
remaining total characters of the program, up to, and including
the 0 command. Do not include the QUIT command in the count.
The Q command should then be issued separately, ending the
program entry mode and reverting to command mode. When this
method of program loading is used, the 8 command must have a
binary value of zero, not the ASCII character @. The program may
also be loaded as separate commands, with a normal data count for
each command. The following example illustrates both options for
loading a program in Binary mode.

BINARY WITH BINARY WITH CYS500
ASCII SEPARATE SINGLE BUFFER
COMMAND DATA COUNTS DATA COUNT CONTENTS

E} A5 caaxwa sar-e- 45

00 . oivanacssss O

B ooy iuday g B CsinnR e 52
R 150; Ol cenvrerrnceaa oc

-y AR I S I | e A e 96

4B raasvea . 4E
N SGO} 02

B e e ana ZC cnacaranarnmamrnn= 2C

Dl cqasansnnans Dl cvdaawansnns seasas ol
+) pr.§ = N OB ssssaaananns “semon s 2B

0o
G} - 7 (R g B e B 47

00

A o wwnwsais . AT i i S R 4E
N TED} 0z

EE «ccans- s amae BE #+ =08 5rcroncnisnas EE

Q2 oaiqwt sereas B2 cnnvnnaveres vae e e 02

ZLF oo aiiin ik waie B R P TR 2D
—} oo

A7 cavanercnnn 47 ceiennan R 47
G) oo

30 nersann s sas (M) cvvmmrrmamaaadhadaa 0o
o) 0o
Q {51 crnenennnnnn 51

The Program buffer in the CY500 will contain the same 13 bytes no
matter which byte sequence is used. In ASCII mode, it takes 31
characters to define the program, including the E and Q commands.
In Binary mode, with a separate data count for each command, the
program may be defined in 24 bytes. By using a single data count
for the program, this number may be further reduced to 17 bytes.
Note that the Binary mode values and the program buffer contents
are shown as hex numbers.

30

INTERNAL PROGRAM STORAGE

The CY500 program buffer can contain 18 bytes of program commands

and data. The description of instructions contains the length of
egach command and is summarized in Table IV. Note that program
parameters set in the command mode do not reguire any space in
the program buffer. If the internal storage is exceeded, the
effects on operation will be unpredictable. For optimal
operation, the CY500 is treated as a co-processor, with

subroutines loaded and executed using Interrupt Req #2 (pin 32)
to inform the host when a given routine has finished executing.

TABLE IV INSTRUCTION LENGTHS AND PARAMETEER CHARACTERISTICS

INSTRUCTION BYTES PARAMETER RANGE

ATHOME
BITSET

CLEARBIT
DOITHOW

ENTER

FACTOR
GO
HALFSTEP

rate divisor 1-255

INITIALIZE
JOG

LEFTRIGHT

NUMBER travel distance 1-65535

ONESTEF
POSITION
QUIT
RATE

target location 0-65535

rate parameter 1-255

SLOPE acceleration 1-255

TIL
UNTIL

WAIT

EXPEND
3

5]

msec time delay 1-65535

o e B3R % o e b e R | e

B

USER $OFTWARE FOR

PROGRAM LOADING T

T
(1}
L]

7]

POV

HOST SOFTWARE CONSISTS OF BUFFER { —
TO HOLD COMMANDS TO BE LOADED IN- _‘ﬂ_“ o
10 CY500 PROGRAM BUFFER PLUS HAND- e
SHAKING ALGORITHM TO COMMUNICATE =
WITH CYS00. r }E'l:l
M w
T o T
Figure 5.1 CY500/HOST Interface Diagram. +

31

data to the CY500 via output port ODCH.
commands is stored at BUFFER,
terminal symbol OFFH.

access the character string.

INTERFACE EXAMPLE

In the following, it will be assumed that the 8080/8085 transmits

-
,

LXI

0081 11AaBOD D, BUFFER
GETCHAR:
0084 1A LDAX D
0085 FEFF CPI OFFH
D087 CA9300 J2 QuUIT
008a 13 INX D
O08BE OEO7 MoV C.A
008D CD9400 CALL SHDCHAR
0090 C38400 JMP GETCHAR
L
QUIT:
00393 CF RST EXIT
SWDCHAR:
0094 DBBS IN OBSH
0096 E60L ANI 1
0098 CR9400 JZ SHNDCHAR
po9B 79 MOV A,.C '
009C E67F ANI 7FH
D0SE D3DC ouT 0DCH
GOTIT:
QOAQ DBBS In OB5H
00A2 E60L ANI 1
00a4 CZA000 JNWEZ GOTIT
00A7 C9 RET
BUFFER:
i
Figure 5.2

The string of ASCII

terminated by a stopper, or

The D-E register pair will be used to

BORO BUFFER
FOR, AsCU
MODE

ASCIY
COMMANDS

'E' 45

AGRO BUFFER
FOR BIMNARY

RESULTING
CH500
PROGRAM,
BUFFER

'F 46 ol ol 03
F 3} LR A 03 03 AT
'3 33 44
Sef Factorof 3
f Factorof o ¥

11 BYTES

22 BYTES

oD

29 EMTES

9 COMMANDS

8080/8085 Interfaced to Stepper Motor through CY500
Stepper Motor Controller.

32

G TIMING AND CONTROL INFORMATION©
CY500 TIMING AND CONTROL INFORMATION

In the parallel interface mode the user must wait for the CY500
RDY line (pin #27) to be high before applying a WR strobe to
pin #1. Note that no data set-up time is required, that is, the
data may appear on the data bus at the same time that the write
strobe, WR, goes low. This is especially convenient in the ASCII
mode as bit 7 of the ASCII data byte can be used to generate the
write strobe (see figure 9.4). The data is read into the CY500
from the data bus by a low going read strobe, RD, appearing on
pin #8. The data should be valid at the trailing edge of RD. RD
may be used toc enable the data onto the data bus from an external
device. The data may be removed at any time following the
occurrence of RD, however the WR line should be held low until
the RDY line acknowledges the transfer by going low. The
simplest interface ignores the RD strobe and uses the RDY/BUSY
line only, as shown in figure 2.1.

RDY/BUSY i e .,

WR)

RD

DATA BUS

Figure 6.1 Parallel Handshake Timing Sequence.

ASYNCHRONOUS COMMUNICATION .

FARALLEL DATA BUS

DATA Egg &
STABLE .l

- ~

HANDSHAKE | TIMING: |

ADY -— : HE i
Tfh__ﬁ S : ;
'i'. :!FTI Wa —» i FULSE-l—iLIIJLr—N—ﬂ' I-IL--

ABORT —=

PMCLDE SWITCH COMMARMES

ONTROL
rEI .G-. WAIT—h SUTP |
'\..l_k""f PAOG *— STEPPER TRIGGE R ! o
v AN *+—] MOTOR INT REQ 1 (MOTION COMPLETE)
; (NT REQ 2| CONTROLLER
o :

'’ PROG. COMPLETE)

Figure 6.2 CY500 Timing and Control Signals.

33

DOITNOW (RUN) TIMING

After entering program code into the CY500 program buffer, and
exiting the program entry mode via the Q command, the host
computer should wait for the PROG line (pin 31} to go high,
indicating that the CY¥500 is no longer in the program entry mode.
After testing the RDY line to be sure that it is high, the host
computer can send the DOITNOW command D) as shown in figure 6.3.
Using a 6MHz crystal, the CY500 will be busy approximately 150
microseconds with the D command and approximately 400
microseconds after detecting the end-of-command code (}=0DH).
The CY500 will then lower the RUN line (pin 32), raise the RDY
line (pin 27) and begin executing the program. If the first
program instruction is BITSET (and the control output (pin 34)
has been previously cleared) the control line will go high in
less than 100 microseconds.

* TIMING INCLUDES BOBO DRINING SOFTWARE AS WELL AS CYS00 TIME

PROG

rﬂmﬁup——ﬂ*mﬂﬁbaf———mﬁhm————ﬂ
RDY/BUSY ... ;

WR

DATA

RUM

CONTROL]

48
Figure 6.3 DOITNOW (Run) Timing Diagram.qﬂ4”“

PROGRAM SYNCHRONIZATION MECHANISMS

Most stepper motors are employed as parts of functional systems.
These systems often must synchronize the behavior of the various

subsystems to each other or to a real-world coccurence, such as an
operator input. The CY500 has been designed with both signal
emitters and detectors to allow easy synchronization of the

program to neighbnrin§ (interacting) subsystems. For example, one
output pin toggles with each step taken and another produces a

pulse (of duration 5-25 microseconds) with each step. One input

pin is used to gate each step if the TRIGGERED mode of
operation is used, while another input pin is used to provide
PROGRAM WAIT until the signal on this pin goes LOW, at which time

program execution continues with the next instruction. If
enabled by software command or program instruction, two other
input pins can be used to control direction of stepping, and to
start and stop stepping under external control.

One output pin can be set or cleared by program instruction, thus

allowing the program to provide a synchronization signal for
synchronizing some external device, for use with an external

pulse counter for counting program loops, or any other use the
designer finds appropriate. An ABORT line is provided to allow

34

detection of stops, and both MOTION COMPLETE and PROGRAM COMPLETE
outputs are available for interrupting the host or for providing
this information to other subsystems. These input and output
control lines are shown in Figure 6.4.

Ay
g{% ‘;'F?E% SIGNALS
CONTROLLER|

TRIGGER ——=—

toeete J L | L_
puse JL T _JL _TL

PROGRAM OUTPUT

RESET —
EXT. DIR. CONTROL—==
EXT. STOR/START ——==

MOTION COMPLETE (inNT.REa})
PROGRAM COMPLETE (INT. REQZ)

ABORYT —=|

WAIT ——

Figure 6.4 Input pins allow user control of CY500 operations or

facilitate synchronization of CY500 to external
events. Output 1lines allow CY500 to provide
synchronization or control signals to external
devices.

TRIGGER OPERATION

In the triggered mode of operation, the GO command initiates the
stepping seguence if the trigger pin is LOW. If the trigger pin

{%}n #30) is HIGH, the controller siﬁgfy waits for a LOW level on
this pin and then takes one step. is signal may be used with

SINGLE step (ONESTEP) operation or MULTI-STEP operatiorm.

TRIGEER

#TTIGN COMPLETE _,_I 2 mSEC !.._~ l

Figure 6.5 Trigger Timing.

as

THE ABORT SEQUENCE

If the ABORT line is brought low during a stepping sequence, the
sequence is aborted and the motion complete (INT REQ 1) line gces
low., If a program is executing, the next instruction is fetched
else the the CY500 simply waits in the command mode for the next
command. Note that if the ABORT line is made active low in the
slew (SLOPE) mode, the CY500 does not decelerate, but comes to an
immediate stop. The ABORT line may be used to find the home
position by stepping CCW until a limit switch pulls the abort
line low. If the next instruction in the program buffer is
ATHOME, then this position will be declared position zero.

ToG6LE _j | S |
PULSE _ﬂ h h h

m‘ﬁ‘éﬁ * L______
ABORT l_

Figure 6.6 MOTION COMPLETE signal (INT REQ 1) is cleared at next
step or with receipt of new byte.

EXTERNAL CONTROL

If the J command is executed, the external START/STOP (XSS) pin
is used to begin stepping at the previously specified rate. The
wstepping continues as long as X55 is low and stops when XSS5

rises. If the L command has also been exeputed, the dirgctiqn
control is affected via EXTDIR. The clockwise (CW) direction is

selected when EXTDIR is HIGH and counter-clockwise (CCW) when

LOW. An example of external direction and start/stop control is
shown in Figure 6.7.

—

|

STOP
xS temer L
(="
EXT DIRY cow

—— o e et [

POSITION @

— - TIME

Figure 6.7 Example of operation with external (hardware) control
of startstop and direction wvia XSS and XDIR pins.

6

INTERNAL/EXTERNAL DIRECTION CONTROL

In most applications the user will control direction of stepping
via the software commands (+ for CLOCKWISE, and - for COUNTER-
CLOCKWISE). The CY500 powers up in the software or internal
direction control mode. For those applications in which an
external signal is to be used for direction control, the user
sends an L (LEFTRIGHT) command to place the CYS500 in the external
direction control mode. All steps occurring after this command
is sent will be in the direction determined by the control pin.
The internal direction control mode is restored only by a
hardware or software system reset command.

The default mode is software direction control. L software
command is used to select the external direction control mode.
In a similar fashion, the default mode of operation of the

controller requires a G command to execute a step or series of
steps. However, the J command specifies external-start-stop mode

and allows an external device to start and stc:ap the step sequence
by controlling the EXT START/STOP pin (pin #28).

External Direction Control

ose L JTL T J1 T1 N N
o | Nn_I—u gl
TN k% | I

Cw
ow
TRIGGER ' I |

Figure 6.8 Direction of motion is not available externally
except through observation of motion.

STOP /START OPERATION

If the JOG (External Start/Stop) command J is given, the control

of stepping is effected via the voltage level on the XSS
pin (pin #28). When the XSS pin is LOW, the stepper will begin
stepping in the specified direction (CW/CCW) at the specified
rate in the selected mode (HALF step/FULL step) and will continue
until the XSS pin goes HIGH. In this mode the CY500 will receive
all commands.

The MOTION COMPLETE (INT REQ 1) goes low in XSS mode when either
XSS or TRIGGER is used to stop motion.

External Start/Stop Operation
PULSE I nn || [| N n
e L [L1
TRIGGER I

Figure 6.9 Stepping occurs at rate specified by prior parameter
settings.

37

STEP TIMING SIGNALS

Two timing signals are provided for the convenience of the user.

The PULSE signal goes HI for approximately 5 micro seconds at the
beginning of each step time. The TOGGLE signal changes state at
each step transition. Both of these signals are shown in Figure

6.10.

TIME

TOGGLE

STEP

PULSE

Figure 6.10 Step Timing Signals

FULL STEP DRIVER SIGNALS

STEP 1 2 3 4 1
¢ 0 1 1 0 0
$4 1 0 0 1 1
¢4 1 1 0 0 1

uLse ﬂ_rnzn_:r"anl

Ly

%2 :

& i

by

Figure 6.11 Full Step Control Outputs.

38

HALF STEP DRIVER SIGNALS
STEP |1 2 3 4 5 6 7 8 :
¢; |0 1L X 1 1 1 0 0 0
g, |1 1 0 0 0 1 1 1 1
o3 |0 0 0 1 1 1 1 1 0
s |1 1 1 1 0 0 0 1 1

Figure 6.12 Half Step Control Outputs.

HALF STEP OR FULL STEP

Steppers operate with each step egual in torgue output
(proportional to current input) or in half-step mode in which the

drive current alternates between 1 and 2 (n and 2n) coils. The
half-step mode doubles the numbers of steps per revolution,
thereby goubling the resolution. Although the torque is not
maximum in the half-step mode, but varies, the variation tends to

broaden the non-resonant bands; i.e., to diminish the region in
which resocnance occurs.

39

7 STEP RATE INFORMATION 7
RATE CONTROL

The CY500 has been designed to provide ¥owerful precise position
control. The step rate is also controllable over a range varying

from one step every five seconds to 3350 steps/sec using a 6MH=z
crystal. The rate parameter is non-linear, with increased
resolution at the slower speeds. At the higher rates it is
possible to use an external pulse source to achieve precise rate
control. The pulses are applied to the trigger input and the
CY500 takes a step each time the trigger input goes low. The
trigger input should be applied until the output pulse (pin #36)
goes high and then removed as indicated in figure 7.1.

TFEIGGER ‘ :J \ :j

IMPUT}

PULSE (/ :
{ouTpPuT

Figure 7.1 The CY500 waits for a low level on trigger (pin #30)
before taking the next step.

The RATE instruction, R r), where r=rate parameter, specifies the
step rate in the multiple step mode of operation. The rate
parameter ranges from 1 to 253 corresponding to rates of 49

stePEKEEC and 3360 steps/sec respectively. (A1l1 rates discussed
in this manual assume a 6 MHz crystal. For crystals with
frequency fc the rates should be scaled be fc/6MHz. The rates

assume a rate FACTOR of 1, entered via the command F 1}.

For rate parameter r in the range 1<r<255 and a factor £ in the
range 1<f<255, the step rate is computed wia the equation:

steps/sec = 1/(256-r)*80 psec + (f-1)*20.4 msec + 107 usec

the above equation could be approximated using the following:

steps/sec = for 1<r<200
b-r
steps/sec = 12500 for 201<r<255
{257.344-r)

40

TABLE V RATE TAELE
PARAMETER FORMULA EMPERICAL
0 48.8 48.8
25 54.1 54
50 60.7 60
75 69.0 69
100 80.1 80
125 95.4 95
150 L17.2 117
175 154.3 154
200 17,9 217
205 238.8 239
210 264.0 264
215 295,32 296
220 334.7 335
225 386.5 387
230 457.1 457
235 559.4 560
240 720.7 721
245 1012.6 1013
250 1702.0 1702
251 1970.4 1970
252 2339.0 2339
253 2877.0 2901
254 3730.0 3359

Rates for a Factor of 1 (F 1))

41

m E———
o [255,%%6%)
{254 ,3359)
3000
« (253, 2901)
2500 :
» 252, 23290
Lo
42
S -.
= | (251, 1910]
=
< i
% ! s (250, 1102
bt | :
|
% 1500 . {149, 1438}
5 ' ;
5 i { (248, (328)
..E ' | ol (247, (2081
E | » (240, 11O
= 1000 - %, L2173
! + (44,379
| (243,871 +
(Z42,815) =
| (24,168 »
| ' (29, 682) o (24021
! | (2T, b1 _‘1'.13_3,@‘&]
| i *{235,560)
500 : (232493} (
(230,457}
{10,735) *(775, 38T)
' I, " ims, 256
I (o021 * {fil&,';:-;'l
- WE, T
so.Go) (75,63 CO0BG) (16,98) .
!tu.sa} il ,:, T : - fuso,um u7s,152) [
o 50 160 150 200 %50
Rate Parameter
Figure 7.2 Step Rate vs. Rate Parameter.

42

RATE DIVISOR FACTOR

The stepper speed range discussed above assumes a rate divisor
factor of 1. In this case the lowest rate of speed is 48.8
steps/sec. For many applications this may be too fast. The rate
FACTOR command, F £), allows the user to divide the step rate by
the factor f where 14f£255. 1In most cases the rate parameter, r,

should be set equal to 1l if a rate factor, f, unequal to 1, is to
be used. The use of the rate factor is shown in Table VI.

TABLE VI STEP RATE FOR VARIOUS RATE FACTORS
{rate parameter r = 1)
RATE
DIVISOR FACTOR STEPS/SEC SEC/STEP
1 48.8
2 24.4
3 16.2
4 12.2
5 9.7
10 4.8
20 2.4
24 2.0
48 1.0
29 0.50 2.00
100 0.50 2.05
150 0.33 3.07
200 0.25 4._09
245 0.200 4.999
250 0.20 5.10

Two special rates are easily achieved via a combination of rate
parameter and factor (assuming 6 MHz crystal).

RATE PARAMETER r FACTOR £
steps/sec sec/step
1.000 48 50
60.0 49 1

43

STEPS/SEC : STEPS/SEC
Sor . ' 0 .
40+ £
30+ [=
- L]

w0t : = _ o =
tu * K 2" » L]
o T T T T T ‘.F '-0 T T T -—-F

0 1 4 3 4 g o 50 4] 150 200 250

} o

Figure 7.3 Plot of steps/sec versus rate factor with rate
parameter equal to 1 and 6 MHz crystal.

VARIABLE RATE CONTROL

The flexibility of the CY500 allows the user to achieve variable
rate control using external frequency sources in several ways.
The simplest scheme use the JOG command, J, to place the CY500 in

the External Start/Stop mode. Two possibilities exist here:

XSS pin Trigger
Case 1 step when low always low
Case 2 always low ! step when low
i

RAMPING MODE OF OPERATION

The CY500 will ramp up to a maximum specified rate and then ramp
down to stop at a specified position or number of steps. The

Slope command, 5 sj), should be the last command encountered
before the G command begins stepping.

During acceleration, the internal rate parameter will vary
according to the following formula:

r = (n-1)s + 1 for step n = 1,2,3,...

which means that the rate of the first step will be 1, with the

value of Slope added to each succeeding step. This procedure
continues until the specified maximum rate has been reached.

44

CONSTRAINTS ON SLEW MODE OFERATION

if R = max step rate
5 = slope parameter
N = number of steps

I. R N
— {__
5 2
i i § <« 255-R or R £ nS £ 255 where n = integer

DISPLAY OF RAMPED OPERATION

The display of several output lines is easily accomplished using
the end-of motion signal (INTREQL = pin 37) to externally trigger
the horizontal sweep circuits of an oscilloscope. The host
computer sends the setup parameters to select the maximum rate
and the number of steps to be taken and then sends the slope
command followed by the GO command. The following timing
diagrams illustrate the effect of various slope parameters on the
stepping behavior.

Note in figure 7.5 that when S=B0 and R=240 the rate is
incremented three times before R is reached while 5=60 and R=240

{figure 7.6) requires four increases in the step rate to reach
R=240. Note in figure 7.7 that when S=59 the rate increases for
four steps, however since constraint II {(above) is violated

(52¢255-240 is not true) the next rate is in error and the motion
is erratic.

sTEP1 STEF 2 STEPs sTER4
PULSE |'--- 20 msec | o 1 . 'I HOTE DECREASING STEP WinT
el “ S‘fﬁﬂi '1. GET UP RATE & MUMBER OF STEPS ”

S a%

} | OGP SENDING SLOPE & GO COMMANDS

— M “5‘ C 3
RDY/BUSY _JWEHMHL

i

L~

Figure 7.4 Ramp Rate Timing Example: R 200} N 4} S 9) G}

45

INTEER 1

TRIGGER
[Smﬂe

RDY /BUSY

TOGGLE

FulsE

STEPRRTE

Figure 7.

THTREG L ”

K 14;::}
M e
SEE FLGURE 49
[EIE‘QJ‘ (e AL

5 Ramp Rate Timing Example: R 240) N 16) S 80} G)

I

R 240}
Mol
8 b0
A)
TOGGLE | || I || | || | ||
PULSE] Jl] '|
I 1 1 4 E b T AIDN TR WIS &
3TEP RATE |
Figure 7.6 Ramp Rate Timing Example: R 240) N 16) S 60) G,
ToGGLE] WPk
M 1)
5 5y
PULSE] 6] ”] L]] - REPEATING
) - 3 4 5 & 7
STEP RATE I i
Figure 7.7 Ramp Rate Tiﬁing Example: R 240) N 16} 5 59, G)

using invalid parameters (see previous text)

46

SLEW MODE OPERATION

Many applications require that the stepper move at its maximum
stepping rate. In most situations, the mechanical constraints on
the system prevent the motor from accellerating from zero speed
to maximum velocity in one step. For this reason, it is
desirable to accelerate or RAMP UP to step at the desired
position. The CY500 Stored Program Stepper Motor Controller
provides for this mode of operation via the SLEW MODE command.
This command sets the mode and also enters the appropriate
parameter. The parameter is the RAMP RATE or SLOPE defined as
the change-in-rate/step. The rate factor, f, is auntomatically
set to 1 (for maximum velocity). The maximum rate desired is
specified by the RATE command as usual, and the number of steps
desired is specified by the N command as usual. A typical
instruction sequence is shown below.

N 1095) ;set number of steps = 1095

R 220) ;set maximum rate = 335 steps/sec (see Table III)
S 12) ;jchange in rate parameter per step

G) ;begin stepping

This instruction sequence sets the number of steps to be taken,
the maximum rate of travel, and specifies the change in the rate

parameter per step. Note that at the higher step rates, the
dependence of step rate on rate parameter is non-linear as shown

in Table III. Thus the ramped operation is generally

satisfactory at low or medium speeds but may require external
timing at higher slew rates. An example of such timing is shown
in figure 7.8. 1In this example the BITSET instruction precedes

the GO instruction in the program. This causasfpin #34 to go HI
and the capacitor begins charging. The output of the V/F follows

the voltage step. While this circuit does not provide the ideal

deceleration, it is suggestive of the type of open loop external
control possible,

! m CY500 .
" VIF | TRIGGER iﬁzEL
5 | T

9

a.) Ideal b.) Actual c.) External Control of Ramp up

EATE

STEP STEF

Figure 7.8 Actual and Ideal acceleration curves and suggested
external ramp-up control circuitry.

47

) 5

_'LJ. e

W

& F

S

o !

ol)

S

I___.r_‘-l_lj_ 1 | e § i i i i L L 1 1 i i i i e
Stepr ' T 3 4 5 & 7T B 9 10 U 12 13 14 1B 16 17T 18 19 ...
Position

Figure 7.9 Variation of Rate Parameter with Position for three

different slopes.

Slew Mode Example

Consider a command sequence to
cause the CY500 controller to

accelerate the motor with a
slope that increases the rate

parameter by 5 with each step

taken until a maximum rate
parameter of 180 is reached
(which corresponds to about
180 steps/sec--see Table III),
and then decelerate from this
maximum speed to stop 513

steps from the start position..

To enter this command sequence
into the CY500 program buffer,
we send E followed by), then
the command string terminated
by @ for QUIT. Parameter
values may be set via commands
prior to program loading, thus
allowing all of the program
buffer to be used for active
instructions. Execution of
the program begins when a D

{(DOITNOW) 1is sent to the
CY500.

enter
E} program
code

Figure 7.10
CY500 Programming Example.

48

CLOSED LOOP CONTROL

The constant slope acceleration implemented in the CY500
controller allows higher step rates than would be achievable with
small slope may be sufficient, howewver the long acceleration
times may be impractical for a given application. As is
generally true, optimum performance can be obtained via closed
loop feedback, and this is true for the CY500. Although the term
"closed loop control" often indicates a rather high level of
complexity and circuit analysis, the CYS500 provides for closed
locp ﬂgeratiun with its corresponding optimal performance via the
use of a slotted disk attached to the stepper shaft and an
economical optical "interrupter " module of the type commercially
available from several sources. The use of a slotted disk on the
shaft to break a light beam allows a position signal to be fed
back to the CY500. As shown in figure7.11, this signal may be
converted to digital levels via a Schmitt Trigger and used to
trigger each step. Thus at low rates, the motor accelerates
normally and the rotor is in position when the next step signal
arrives. At higher rates, the next step signal may occur before
the motor has completed the last step. In this case the optical
feedback will cause the trigger input to be low and therefore
prevent the step from occurring until the previous step is

completed. Thus, maximum performance is obtained for the given
stepper motor.

Ty

'I:H{i
220

06 T C2OPF

TA00

INTERRUPTER
MOCULE

Figure 7.11 An interrupter module with slotted disk provides

position feedback to assure that the maximum step
rate never exceeds the motor's ability to keep up
with the controlled fields, and the motor can
accelerate at its maximum rate. Note that some
interrupter modules include a Schmitt Trigger to
produce a TTL output that can be input directly to

the C¥500.

49

8 ELECTRICAL SPECIFICATIONS 8

ABSOLUTE MAXIMUM RATINGS:

Ambient Temperature under biasS........o... 0°C to 70°C
Storage Temperature........ sesesrsessesass=053°C to +125°C
Voltage on any pin with respect to GND...-D.5v to +7v
Power Dissipation...ccvecvsscssacnnnnanena 1.5 watts

TABLE VII DC OPERATING CHARACTERISTICS

TA = 0°C to 70°C, Vecco = +5v+10%

SYMBOL PARAMETER MIN | MAX UNIT REMARKS

ICC pwr supply current 80 | mA

VIH input high level 2.0 Vee| V (3.8v for XTAL,RESET)
VIL input low lewvel -.5| 0.8| V (0.6v for XTAL,RESET)
ILO data bus leakage 10 | nA high impedance state
VOH output hi voltage 2.4 v IOH = -40 npA

VOL output low wvoltage 45| v IOL = 1.6 md

FCY crystal frequency 1 6 MHz

ELECTRICAL CONVENTIONS

All CY500 signals are based on a positive logic convention, with
a high voltage representing a 1 and a low voltage representing a
@. Signals which are active low are indicated by a bar over the

pin name, i.e., RESET.

A11 input lines except Write, Abort, and pin #3292 include 50K ohm

pull-up resistors. If the pins are left open, the input signals
will be high.

Data bus signals are positive logic, and all command letters are
upper case ASCII.

50

RESET CIRCUITRY

The reset (pin #4) line
must be held low upon
power-up to properly
initialize the CYS500.
This is accomplished via
the use of a 1 nfd.
capacitor as shown in
figure 8.1. Reset must
be low for 10 msec after
power-up. Once the
CY500 is running, Reset
need only be low for

about 11 usec (6 MH=z
crystal).

ACTIVE
PULLUP

b.

Figure 8.1 a)Reset Circuitry.
b)External Reset.

CLOCK CIRCUITS

The CY500 may be operated with crystal, LC, or external clock

circuits. These three circuits are shown in figure 8.2. All
timing discussed in this manual assumes a 6MHz series resonant

crystal such as a CTS Knights MP0O60 or Crystek CY6B, or

equivalent. The CYS500 will operate with any crystal from 1 to 6
MHz including a standard 3.58 MHz TV color burst crystal. As

noted elsewhere, stepping rates must be scaled by £/6, where £ is
the crystal frequency in MH=z.

CRYSTAL SERIES RESISTANCE = C23C f= BOTH XTAL1 & XTALZ

I
SHOULD BE LESS THAH 7510 2n+Le! 5V SHOULD BE DRIVEN.
AT 6MHz AND LESS THAN
o AT 3.6 MHT. Cpp = 5-10pF PINTO BEE :

P TAN
] CITAMCE 2

IHEL.
KTAL.
SOCKET,
aTRAY

5-25pF L EACH C SHOULD BE &7 RESISIORS T0 *5V ARE NEEDED

T APPROX 20pF, INCLUDING T0 INSURE Vin=3.8V (F L5

= INCLUIDES XTAL, STRAY CAPACITANCE TTL CIRCUITRY 15 USED.
SOCKET, STRAY. EACH PN Husr nr. HIGH FOR 35- 85%
NoT NEEDED OF THE PERID
RBOVE 4 MHz. RISE AND FALL 1'1H.E MUST NOT EXCEED

20 NANDSECONDS.
CRYSTAIL LC
EXTERNAL

Figure 8.2 Clock Circuits for CYS500.

51

9

CIRCUITS AND EXAMPLES

9

TEST DEMONSTRATION CIRCUIT

The circuitry shown in figure 9.1 provides a simple setup that
allows use of a strobeless ASCII keyboard to control the CY500.
It is generally helpful to use LEDs (light emitting diodes) on
all output lines to visually display the state and state

transitions.

This is especially true when working through the
detailed timing diagrams in the back of this manual.

The

programs used in the timing examples have very slow rates
specified so that the transitions are wvisible to the user if LEDs

are used on the outputs.

+5y

5y
] o
< B kL
B 38 [t WAIT
an 37 f—{>0——MOTION COMPLETE
g B 35 PULSE S5V
o B 34 CONTROL OUTPUT
As 33— TEV ASCI/BIN
T430 ,-:_E,; g 32 f—{>0———RUN 221
=10 3 ——PROG | ™ o
n . 3 b—TRIGGER
= {z STEPPER »jpw—exTDR Ww—— | |
B : E MOTOR 28 fatt— EXT ﬂfmr!srnr ol
= =114 T~ BUSi/READY L—ﬂh—ﬂ—“
a i|is CONTROLLER ™ 0 o—rt
é I3 =] o -
x {1 % atl
"] L o = | Tp 4 PHASE
‘B e m= ([STEPPER
il » ==y YO
% TIE PING HIGH IF NOT IN USE DRIVER
E & . VOLTAGE
5-95 VOLTS
UL 2813 A
ULN znuaa]
oR EGUIV

Figure 9.1 Test Demonstration Circuit

52

CYB-002 MULTI-PURPOSE CONTROL BOARD

A general purpose prototyping board is available which will allow
the user to easily interface his computer, keyboard, or CRT to

his control application. The CYB-002 board comes ready to
assemble as a kit, with the capability of accepting any two
Cybernetic Micro Systems control chips in any combination. Thus
the board can become a dual axis stepper controller, waveform
synthesizer, programmable controller, printer controller, data
acquisition controller, and the like, with very little additional
effort. Support software is also available.

The core of the CYB-002 is Cybernetic's new Local Systenm
Controller, the CY250, which accepts ASCII commands, and
addresses either of the two target chips via a pass-through mode,
or accepts the data as direct commands to its own program buffer.
Since the CYB-002 is wired to accept an optiocnal EEPROM, then
once programmed, it may also operate as an independent system.
The board has additional circuitry for an optional LCD display
and CY300 display controller, and for a network mode via the
CY232. The CY232 will give the user the option of stringing
boards together in a network with each having the ability to
address up to 256 devices.

User definable switches and LEDs are available for various input
and output signals, and an additional wire-wrapping area allows

the user to customize the board to his particular application--in
the case of the CY500, this could include the motor driver
circuitry. While the board was designed as a prototyping aid for
implementing the CY¥xxx family of chips, many users find that it
is the ideal solution to their control problems. The CYB-002 is
available with a variety of options: Display with CY300, Network

with CY232, Memory with EEPROM, Keyboard, and Target with any
C¥xxx, as shown in the figure below:

i }
b
T
o
=

'-_i‘ﬁ :
Pt 1
of
=

Figure 9.2 CYB-002 Multi-purpose Control Board

53

HANDSHAKE PROTOCOL

All commands and data transmitted from the master processor to
the CY500 peripheral processor are sent asynchronously with
complete handshaking performed. The master processor waits for
the CY500 READY line to go HIGH before sending the active LOW
WRITE signal, WR. In the parallel data transfer mode (pin #39 =
HI) the data may be placed on the bus at any time prior to the
HIGH-to~-LOW transition of WR. The data should be stable on the
bus until the CY500 RDY line goes LOW, indicating that the
transfer has been acknowledged and that the C¥500 is BUSY
processing the command or data, The master then brings WE to the

HIGH state. The next transfer can occur as soon as RDY/BUSY
returns HIGH. The segquence described is shown in Figure 9.3.

3 Example 8080/85 Driver:
: ASCII mode operation Bit 7
SENDCHAR : ' of data used as WR strobe,
IN STATUSPORT Routine entered with ASCII
ANI MASK in C-register.
JZ SENDCHAER :WAIT TIL READY
MOV A,C
ANI 7FH
2 VALID DATA
OUT DATAPORT ;WITH WR LOW ouALID DATA. _
: #.-' __________________________
BUSY7?: £ l‘\ - WRITE
IN STATUSPORT \
ANI MASK \ \ /}
JNZ BUSY? :WAIT FOR BUSY e i
= r s = A T
MVI A,OFFH —-‘-—I
OUT DATAPORT ;WER HIGH
RET

Figure 9.3 Data Transfer Handshake Sequence

Pt RIS o it v 1

#45C1| MODE OF OPERATION OF
G500 ALLOWS By OF DATA BYTE
T SERVE a8 1/0 REQUEST PULSE.

[SEE PROGRAM CODE) IR e

o * & |
8zs5 A
PROGRAMMABLE
I/0 DEVICE Bo
Cl= BUSY/ROY
B *ov AsCil/BIN

Figure 9.4 Example Interface to CY500 using 8255 PIO.

54

In the example shown in Figure 9.4 the CY500 is operating in the
PARALLEL ASCII input mode. In this mode, bit 7 is always zero

and b7 line of the CY500 data bus may be tied to ground. Since
the user will normally transfer bytes of data from memory to the
output port, the most significant bit of the data byte may be
used to generate the WRITE strobe, thus allowing only one 8 bit
coutput port to suffice. The SENDCHAR routine shown in Figure 2.3
demonstrates the coding used to achieve this. ©0Of course, a
separate port line may be used to generate WR if this is desired.
If the CY500 is operated in the PARALLEL!BINEHY mode, all 8 data
bus lines are used, and a separate WR line is required. Note
that in the example shown, use is made of the fact that the data

and the WR signal may be applied simultaneously in parallel
operation.

OPERATION OF SEVERAL CY500s USING A
COMMON DATA BUS

In systems where multiple CY500s are to be controlled by a host
computer it is possible to use one eight-bit output port to
establish a common data bus for sending instructions to the
CY500s. Each of the separate RDY lines (pin 27) of each CY500
must be monitored individually and each WR line (pin 1) must be
activated separately. This technique effectively uses the WR
line as a chip select (CS). A CY500 will ignore all bus
information if its WR line is inactive.

SEPARATE
WRITE WRITE vy
LINES | WRITEz

Figure 9.5 CY500s share a common data bus by using separate
write lines for chip select.

55

SYNCHRONIZATION OF TWO CY500s

Two CY500s executing the same program may be synchronized as
shown in figure 9.6. The master controller can control the WAIT
line of the slave CY¥500 wia the BITSET or CLEARBIT commands. The

slave CY500 is started first with a DOITNOW command and executes
a WAIT command and waits until the wait line (pin #38) is driven
low by the CLEARBIT command executed by the master CY500 when it
receives the (second) DOITNOW command. Both CY500s then proceed
to the next instruction and are synchronized as shown in figure
9.6bto within approximately 10 microseconds. Note that when the

two programs are not identical, then the master can also wait for
the slave to execute its own CLEARBIT instruction and thereby
achieve a more general synchronization.

E; CONTROL |
¥ WAIT |
CY500

PULSE,

Fr

TRIGGER

a.) Hardware

MASTER SLAVE
PROGRAM PROGRAM

= Bl

3
i
PULSE; :
. |
CONTROLg l
: :
PULSE ¢ ;‘ e
1 |

i
—— £ IO uSEC—e

=

IDENTICAL PROGRAMS

b.) Timing Diagram c.) Software
Figure 2.6 Synchronization of two CY500s.

56

EXAMPLE PROGRAMS AND WAVEFORMS

Figure 9.7 provides timing relations for a command sequence that
inputs the parameters and executes a G command to begin stepping.
The WR, RDY, and RD signals are related to the data bus and

several outputs are shown as a function of the trigger input.

COMMAND MODE INPUT SEQUENCE:

R 10} set RATE = 10

F 80} set rate FACTOR = B0

N 4y set NUMBER of steps = 4
Gy GO, begin stepping

= 1
We
L)
RDY g
DATA BUS LS
PULSE L L B
TocaLe P i
i1
(MOTION COMPLETE) I\[I E_IJ | S
TRIGGER I-': f
3 I 1 S i Y
5, L I ey
2 I— L
b4 1] T

Figure 9.7 Timing Diagram for Commands

57

| PROGRAM LOOPS

TOGGLE [_J L L
PULSE
INT REQ | t
MOTION COMPLETE
N /9% |
R I e W AV Y
1
e LA AN
] I
TRIGGER l f] /"l
|
The timing sequence for a typical program
is shown in figure 2.8. In this example
preset: R 20 the rate parameter, factor, and number of
F 80 steps are present before entering the
N 3) program-entry mode wvia the E command.
Cy These parameters are chosen to allow easy
observation of the outputs using the
enter: E}) test/demonstration circuit shown in
figure 9.1. The program entered sets the
program: B} = control output (pin #34), then takes
Gy three steps, clears the control output,
C and waits for the WAIT line (pin #38) to
u go low when the wait UNTIL instruction is
B) executed. As shown, the trigger line has
G %?ne high, and the CY500 waits for this
C ine to go low before stepping. Each
Dje=——x time the three steps are completed the
MOTION COMPLETE (INT REQ 1) output goes
gquit: Q low and remains low until the next step
is taken or until another command byte is
run: D} received by the CY500. In the example,
the output is again cleared and the
program loops upon encountering the
DOITNOW instruction.
Figure 9.8 Sample Program and Timing Diagram.

58

The use of loop TIL instruction is illustrated in figure 9.9 The
PROG and RUN outputs are also shown as a function of the Q and D
commands and the @ instruction. The program loops until the

XS8/TIL line (pin 28) goes high, then fetches the next
instruction. The effect of the trigger input on the MOTION
COMPLETE output is also shown.

.. S |
Rus § i::::“
o |
= LUy |
wrieor] [[

By FRDY

MOTICN COMPLETE - U U l {_1)

TOGGLE

TEIGGER

(
Vo

e \
rosan: OOOOOO
(mor o Scarf}

PRESET: C) clear output line

R 10} set RATE = 10

S 255) set SLOPE = 255
F 50) set FACTOR = 50
N 3) set NUMEER steps = 3

MAIN PROGRAM LOOF

ENTER PROG: E} -

B) set output line -
PROGRAM +] set CW direction e TEST EXTERMAL
CODE G) GO, begin stepping |P1” 1 ﬂ%ﬁ%ﬁ%ﬁ?

C) clear ouput line
-} set CCW direction
G) GO, begin stepping v

4
T) repeat above prog Til XSS/TIL = EI] T

B) set output line 1
C} eclear output line P2
@) exit run mode, enter command mode

QUIT: Q

EXECUTE: D) DOITNOW

Figure 9.9 Timing and Control for Program Entry and Conditional
Looping.

59

DRIVER CIRCUIT CONSIDERATIONS

The CY500 provides the timing and logical signals necessary to
control a stepper motor. However, to make a complete system, a
driver circuit must be added to the CY500. This circuit will
take the logical signals generated by the CY500 and translate

them into the high-power signals needed to run the motor.

The user has two choices in the selection of driver circuits.
Existing designs, usually in the form of pulse-to-step
translators, may be used, or special designs may be created.
Translators usually require a pulse and direction input, or two
pulse streams, one for CW stepping and one for CCW stepping. The
translator takes the pulse inputs and generates the proper four
phase outputs for the motor. HNote that it is also possible to
drive motors with this scheme which are not four phase designs.
Since the translator generates the actual motor driver signals,
it only requires the pulse timing and direction information
generated by the CYS500 Pulse and Direction signals. This allows
the CY500 to control three and five phase motors as well as the
standard four phase designs.

TRANSLATOR

TRANSLATOR

Figure 92.10 C¥500 to Translator Driver connections.

If the user opts for his own driver design, the Pulse and
Direction lines may be used, or the four phase outputs may
directly control the driver circuits. This type of design makes
full use of the CY500 signals. The following paragraphs are
meant as a guide to various types of driver circuits, but should
not be used as final driver designs. Detailed switching
characteristics, transient suppression, and circuit protection
logic have been omitted for clarity and simplicity.

Unipolar designs are the simplest drivers, and are generally
useful when running at less than 600 steps per second. These
designs require motors with six or eight leads, since the power
supply is connected to the middle of each winding. The end of
each winding is pulled to ground through a transistor controlled
by one of the phase output lines from the C¥Y500. Motor
performance may be improved by adding a dropping resistor between
the power supply output and the center tap of each winding. This

60

decreases the field decay time constant of the motor, giving
faster step response. The performance increase is paid for by a
higher voltage power supply and heat losses through the dropping
resistors. This type of circuit is know as an L/xR circuit,
where the x represents the resistor wvalue relative to the winding
resistance. An L/R circuit would not have any external

resistors, while an L/4R circuit would use a resistor of three
times the value of the motor winding resistance. Note that the

power supply could be four times the nominal motor walue with

this circuit. Also note that this circuit requires only a single
voltage and one transistor per phase.

Wt ¥t
+ DROPPING RESISTOR +

b, é } b2 b, $a

Figure 9.11 Unipolar driving circuits.

The second basic type of driver circuit is the bipolar design.
In this case, the motor is driven only from the ends of each

winding, with switching logic used to control the direction of
current through the winding. These circuits may be implemented
with a four lead motor, since only the ends of each winding are
needed. Bipolar designs are more efficient in driving the motor,
and result in higher performance than the unipolar designs. Two
methods of switching the direction of current may be used. With
a single voltage power supply, eight transistors are used, two
per phase. Transistors are turned on in alternate pairs across
each winding to control the current. The second alternative uses
only four transistors, but requires a dual voltage power supply.
In this case, one side of each winding is connected to ground,
and the other side is switched between the positive and negative
power supplies. 1In both designs it is very important to insure
that both transistors on one side of the winding are not on at
the same time, as this would short the power supply through the
transistors, generally destroying the transistors in the process.

Protqctiaq logiec is usuall included to insure that one
transistor is off before the other is allowed to turn on.

W

DROPPING
RESISTOR

&i

DROPPING
RESISTOR ri:

Figure 2.12 Bipolar driver designs.

61

The most advanced driver designs are variations on the unipolar
or bipolar types, although they are generally implemented using

the bipolar approach. These drivers are capable of the highest
step rates attainable. They work by switching current or voltage
through the motor at much higher than the rated value. This is
done for only a short period of time, causing the magnetic field
in the motor to change very gquickly, without exceeding the
maximum power dissipation of the motor. As long as the average
dissipation does not exceed the motor rating, the motor will
perform without problems. Once the maximum limit is reached, the
motor may owverheat and self destruct. ©One technique for
increasing motor performance would simply apply a high voltage to
the motor at the beginning of each step. This makes the motor
react very quickly to the change in phase signals. After a short
period of time, the voltage is switched to a lower value,
allowing the motor to continue its motion without overheating. A
second approach, known as a constant current design. senses the
amount of current flowing through the winding, and adjusts the
voltage applied to the motor to maintain the current at its
maximum rated value. At the beginning of a motion, the voltage
would be low, with a constant adjustment to a higher value as the
motor speed increases, and back EMF decreases the current draw
for a fixed voltage level. Another technique, known as chopping,
may alsoc be applied to these driver designs. This approach
applies a voltage much higher than the rated value for a short
period of time. The voltage is then turned off for another time
period. This occurs many times per step, with the frequency of
switching known as the chopping frequency. This frequency may be
controlled by time, switching at a given rate, or it may be
controlled by sensing the current flow through the motor,

switching at a variable rate. The highest performance drivers
are usually designed as bipolar chopper circuits.

The user should consult design guides available from the various
motor manufacturers for additional information.

62

RS-232-C RECEIVE ONLY INTERFACE DESIGN

When the user wishes to communicate with the CY500 over a serial
data link, a special data interface, such as the RS-232-C design
shown in this section, must be used. The main component of such
a design is the UART (Universal Asynchronous Receiver
Transmitter), which transforms the serial data from the data link

into the parallel form required by the CY500.

The design shown here is a "receive only" type, meaning that the

CY500 can only receive data, not transmit. &s shown in the
schematic below, only two signals are needed from the R§-232-C
lines. Transmitted Data contains the data sent by the host to

the CY500, and Signal Ground is a reference for the data line.
Since signals on the RS-232-C interface are not TTL compatible,
the transistor circuit connected between Transmitted Data and the

UART acts as a converter, generating the TTL egquivalent of the
data signal for the UART.

The type of UART shown is a single, 40 pin IC. It was chosen
because the operating mode is set connecting the control lines

either high or low. Other types of UARTs require a command word
to be written to an internal register which controls the mode,
something the CY500 is not capable of doing. The type of UART
shown is made by several manufacturers, and is readily available.
The mode control lines should be connected so that the operating
mode of the UART matches that of the host system. This is very
important in getting data transmitted properly to the CY500.

Whenever the UART receives a character, the data available line
(DAV) goes high. This signal runs the WRITE line, indicating to
the CY500 that a command character is ready. As the CY¥500 reads
the character, the READ signal is used to put the character onto
the CY500 data bus, by controlling RDE, which brings the received
data lines (RD1 to RD8) to their active state. BUSY/READY,
connected to RDAV, then resets the DAV signal, clearing the WRITE
line. Thus, the standard signals from the UART fully implement
the two-line data transfer handshake used by the CY500.

The rest of the circuitry is a baud rate generator. It creates
the clock rates needed to operate the UART at most of the common
data transfer rates. The 7404 and crystal circuit is an
oscillator which runs at 2.4576 MHz. This frequency is an exact
multiple of the popular baud rates used. The CD4040 is a CMOS,
twelve stage counter. It takes the 2.4576 MHz clock rate and
divides it through twelve binary stages, creating one half the
frequency of the preceeding stage in each case. The outputs are
labeled with the resulting data baud rate, although the actual
signal frequency is sixteen times this rate. The clock inputs of
the UART should be connected to the desired rate. It will do an

internal divide by sixteen, generating the data rate needed by
the interface.

&3

%z.m

TRAMSMITTED
DATA,

L.5K

2.4576 MHz 20pF

Figure 9.13 RS-232-C Interface

ZNZZ222

1= No Farity O+ Parity

1=2 StopBits O+ I Stop Bit
0,0 =5Bit/Char 0,16 Bet/Char
1,07 Bt /Char. 1,18 Bit /char
i =Even Parity 0= Odd Parity

64

&

COMMNELT CLOCKS
FOR DESIRED
BAUD RATES

Schematic.

The CY232 Parallel/Serial Network controller alsoc enables the

user to send data to the CY500 parallel device via a serial RS-
232-C port. The actual CY232 to CY500 interface is very easy as

shown in the schematic below. However, since the CY232 gives the
ability to address multiple devices on a network, the CY232
address lines should be tied high or low to provide the CY¥500
with a specific address, and this address should be used when
writing to the C¥232/CY500. Also, mwmultiple CY500s can be
addressed this way by preceding each with a separate CY232 with a
different address or by connecting multiple CY500s to a single
CY232. In the second case, the CY232 address decoding logic
should be combined with the CY232 DAV to generate a unigue Write
Strobe for each CY500 (see also Figure 9.5). The CY¥232 manual
gives complete details on this interface.

Es-tach RxD pavjE2 L weiTe
LINE
L TxP ix B Hsusv/royY
cye32 CYSoD
; TR 08,1 DATA BUS |DBoy Eid MOTOR DRIVER
A e, 4 CONTROL

Figure 9.14 CY500 connections to CY232.

€5

PROM STAND-ALONE INTERFACE DESIGN

When the CY500 is to be used in specific applications, with fixed
commands or a small number of different programs, the user may
eliminate the need for a keyboard, which is prone to typing
errors, and the need for a computer, which may not be justified
for the application. By programming the C¥500 commands into a
FROM or EPROM, a stand-alone design may be generated, in which
the program may be selected by switch position, and a push button
is used to get things going. The BUSY/READY signal from the
CY500 is used to advance the address counter of the PROM, and the
hardware automatically loads the commands, one byte at a time,
until the end of the program is reached. The end of program then
inhibits further program loading until the procedure is restarted
by setting the address to the front of a program again.

The circuit shown in this section is started by selecting the
desired program starting address for the PROM. With the 74193

counters, any address may be chosen by setting the counter inputs
and pulsing the load signal low. The schematic shows the load

signal controlled from the CY500 RESET, but a separate load
switch could be used. The outputs from the counters control the
address inputs to the PROM. Each address corresponds to a single
CY500 command character, so the PROM should be organized as eight
data nu%Puts per address. Mang popular FPROMs and EPROMs are
organized this way, including 2708s, 2508s, and 6309-1s. Enough
address lines must be provided to access the number of bytes
required by theiyra ram or programs. The design shows eight
[+

lines, allowing r 256 bytes, but more could be added by simply
cascading additional 74193s.

When the starting address is loaded, the PROM will output the
first command byte to the CY500, so the data bus will have the
byte ready when the CY500 reads it. When the CY500 becomes
ready, with a high level on the BUSY/READY line, the 7400 nand
gate generates a low output to the CY500 WRITE line. This will
tell the CY500 that a command byte is available. The CY500 will
read the byte from the data bus and then go busy, indicated by a
low level on the BUSY/READY line. This will generate a high
level on the WRITE line, indicating that the byte transfer has
been completed. The same signal also clocks the 74193 counters,
advancing the PROM to the next byte location, and putting the
next command byte on the data bus. When the CY500 has finished
processing the last command byte, it will go ready again,
generating another WRITE strobe, and causing the CY500 to read

the next command byte.

The above procedure continues until the PROM address reaches a

value at which the data byte output is all bits high, OFFH. This
Will generate a low output from the 7430, which will keep the
CY¥500 READY signal from generating another WRITE strobe. The
circuit stops clocking at this point, and stays frozen with WRITE
high and the 74193 counters set at the address which contains the
OFFH byte value. No more bytes will be transferred until the

66

address is changed by another load pulse to the 74123. This
means that the user must end the program to be loaded into the
CY500 with a byte containing the OFFH. Note that the OFFH is not
read into the CY¥500, it is only used to stop the circuit from
advancing any further. Since OFFH is not a legal ASCII
character, it may be used to end the program without fear that
such a value might be part of the program, so long as the CY500
is operated in the ASCII mode. If the CY500 must be operated in
the Binary mode, and the program to be loaded must contain an
OFFH data walue, some other means of stopping the program must be
found. 1In this case, the best approach would detect the end of
program by a unigue address from the 74193 counters. This would
require the user to place the program in the PROM so that the
last program byte occurs at the address just before this end of
program address. Note that the same logic now used will work if
the last address is OFFH. In this case, the 7430 inputs connect
to the 74193 outputs instead of the data bus. The last byte of
the program should be at location OFEH, one before OFFH, since
the byte at location OFFH would not be read by the CY500. With
this scheme, the starting address of the program would depend on
the length of the program, and must be set properly before the
locad pulse is given to the 74193. The design shown in the

schematic allows the starting address to be fixed, with the end
indicated by the OFFH data byte value,

SET SWITCHES Ta
STARTING ADDRESS
PUSH RESET To LOAD

TERMINATE
Ol BFFH
BYTE WALLE

Figure 9.15 PROM Stand-alone Interface

67

EEPROM STAND-ALONE INTERFACE DESIGN

The CY250 Local System Controller will allow the user to
interface the CY500 to an EEPROM for easy storage of often used

programs and for a stand alone system. The CY250 accepts serial
or parallel commands and can address either of two CY500s via a

pass-through mode, or accepts data as direct commands to its own

program buffer., Alternately, the command sequences may be
defined once and sent to the EEPROM, where the various command

sequences are stored as named procedures, with the CY250 taking

care of the EEPROM operation, space allocation, and name
directory. This allows frequently used programs to be remembered
by name and recalled whenever they are needed. For stand-alone

Gperatian. the CY250 has an "auto recall" feature which calls a
specified routine from the EEPROM on power up or reset. This

EEPROM interface has been implemented on the CYB-002 board shown

in figure 9.16. More details on the EEPROM interface may be
found in the CY250 manual and the CYB-002 manual.

FPARALLEL INTERFACE SERIAL INTERFACE
To HGST

L Iald-H3

tY2so | b

-

CYS00

e O

EEPROM

LATCH | LATCH

Figure 9.16 CY500 interface to EEPROM through C¥250.

68

10 compUTER coNTROL OF cy500 10

COMPUTER CONTROL OF CY500

The ability to control all of the CY¥500 control inputs and
monitor all of the CY500 outputs allows the designer to exercise
the maximum control over the device. The following sections
present information that may be used as a guide to interfacing
the CY500 to a computer via the use of programmable I/0 devices
such as the Intel 8255. The programs are written for the 8080
microprocessor but the general scheme will of course work with
any computer using two parallel 8-bit output ports and one
parallel 8-bit input port. The setup is as shown below:

HO5T
COMPUTER

v

e o

-

Figure 10.1 Preferred setup for Test/Display/Control of CY500
Stepper Controller.

By using a loop in the host computer (or in the CY500) the user
can achieve a repetitive operation of the CY500 that allows easy
display of CY500 signals on a standard oscilloscope. The use of
externally triggered horizontal sweep circuits to synchronize the
scope display is particularly convenient. The MOTION COMPLETE

(INT REQ 1) output (CY500 pin 37) and the CONTROL output (pin 34)
serve well as external triggers.

ENTER/QUIT PROGRAM MODE

A key feature of the CY500 is the capability to accept and
execute sequences of instructions; i.e., stored programs. The
device powers-up in the Command mode of operation in which wvalid
instructions are executed as they are received. If the ENTER
command, E, is given, the device initializes the relevent
(internal) pointers and prepares to accept the program entered.
All commands received prior to the receipt of the Q command are
stored in the program buffer in the order in which they are
received. Each command is entered just as in the command mode;
that is, the opcode is entered followed by either the Linend
character) (carriage return) or a delimiter and parameter string
terminated with the }. The only command NOT terminated with a

Linend (ODH) is the QUIT command Q=51H. The linend should not be

69

used immediately following the Q character. The escape (QUIT)
command terminates the program entry mode of operation, and

returns the system to the command execution mode.
-

The maximum efficiency in 1}
use of the CY500 may be

. : SOFTWARE
gained by fresettlng INITIALIZAT IO
parameter ~values before e
entry and execution of the LOADING
program. The host program
may treat the C 00 ﬁ
program as a "Co-routine"”
that can be passed a set a J
of parameters and invoked -
via the DOITNOW command. Rr)
The host can then_sam%le 53
the RUN output (pin #32) kE
or utilize this cutput in Pp
an interrupt mode to USE OF £Y500
detect program completion b} %ﬁ%ﬁﬁ?
and load new parameter or &ﬁ%ﬂﬁﬂﬁa
programs as appropriate.
This mode of operation is s i
particularly well suited Eﬁﬂﬁmm Eﬁﬂﬁn
for inclusion in multi- COMPLETIDN Wi "D0 T HOW*
tasking systems when two AELOMBLISHED
or more CY500s are wﬁﬁw

i DR INTERRUPT

ﬁ;;irolled by a single | R

WRITE
STROBE
CIRCUITRY

EDY

£

UP-COUNTER,

PROVIDES
ADDRESS
To ROM

COUNT
[}

S»
R2

ADDRESS

DATA
DATA Bus

CY500

BUSY/RDY

Figure 10.3 CY500 can receive commands and data from a ROM
sequencer for many stand-alone applications not

requiring a host microcomputer.

70

CY500 STAND-ALONE APPLICATIONS

The CY500 receives data and commands from an 8-bit data bus. The
source of data in most cases will be from an ASCII keyboard
during prototype development and a microcomputer in the final
system. The CY¥500, of course, does not know or care where the
commands and data actually come from. This means that as long as
the handshake protocel is properly implemented, the commands can
be stored in a ROM, PROM, or EPROM and can be segquenced to
control the CY500 with no host processor at all. For certain
limited repertoire machines and stand-alone applications, this
may be a very practical solution. A conceptual diagram of this

type of system is shown in figure 10.3. See also Custom Device
Generation in the first section of this manual.

ASC11 '

i .

At

7430
B-IMPUT NAND

L § BUSY/RDY

Figure 10.4 Write Strobe Generator.

' PROGRAMMING EXAMPLES

The following pages illustrate several programming examples,
including waveforms and program listings. Programs are all
written in 80B0 Assembly Language, but the comments should allow
those readers who are not familiar with the 8080 to understand
what the various subroutines are doing. The programs were used

on an SDKB0 board, with the CY500 included in the wire wrap area.

We start with an equate table, indicationg how the CY500 was
connected to the SDK80 I/0 signals. The names assigned to the
various signals are used in the other routines. The table is
followed by a Binary mode example, with the data buffer,
BINBUFFER, showing the exact data bytes sent to the CY¥500 in this
program. All bytes except the OFFH at the end of the table are
sent by the SENDPARALLEL program, which is shown next. This
routine implements the basic data transfer between the SDK80 and
the CY500, illustrating an example of the handshake protocol
needed to transfer the bytes. It may be used in either Binary or
ASCII mode. The ASCII mode example, which follows the
SENDPARALLEL program, sends the same commands to the CY500 in
ASCII mode as the Binary mode shown previously, with ASCIIBUFFER
containing the ASCII data bytes sent by this program. Final}y.
another Binary mode example is used to generate a repeating
oscilloscope waveform.

71

TABLE VIII EQUATE TABLE AND 8255 PORT ASSIGNMENTS

The CY500 is connected to 8255-A4 ports OECH
to OEEH on the Intel SDKB0O board.
EQUATE TABLE

LEDS EQU OFS5H : PASS/FAIL/TESTING
; LEDS ON PORT B=F5H

DATA EQU OECH :8255-A4-PORT.A
: CY500 DATA BUS

STATUS EQU OEDH ;8255-A4~PORT.B
H CY500 STATUS PINS

MOTION EQU 1 :BO

- MOTION COMFLETE
PULSE EQU 2 ;Bl - PULSE OUTPUT
RUNBAR EQU 4 ;B2 - RUN MODE_PIN
PROGBAR EQU 8 ;B3 - PROG MODE PIN
BITOUT EQU 10H B4 - CONTROL OUTPUT PIN
READY EQU 20H ;B5 - READY/BUSY PIN

TOGGLE EQU 40H 1B6
SWITCH EQU B80H :B7

TOGGLE OUTPUT
SWITCH TO START TEST

CONTROL EQU OEFH ;8255-A4-PORT.C - CY500 INPUT

WRBAR EQU O ;C0 - WRITE STROBE TC CY500
WRITEHI EQU 1 1CO0 = 1 - INACTIVE WRITE STATE .
EXTDIR EQU 2 1Cl - EXT DIRECTION CONTROL
HIEXTDIR EQU 3 i€l = 1

XS5 EQU 4 ;C2 - EXTERNAL START/STOP PIN
HIXSS EQU 5 ic2 =1

CLRPULSE EQU & :C3 = 0 CLEAR PULSE F/F
REMOVECLR EQU 7 ;C3 = 1 REMOVE CLEAR SIGNAL

ABDRT EQU 8 :C4 - ABORT LINE TO CY500
NOABORT EQU 9 iC4 =1

TRIGGER EQU OAH ;C5
STOP EQU OBH ;C5

CY500 TRIGGER INPUT
1 - HALTS STEPPING

WAIT EQU OCH :C6 - WAIT INPUT TO CY500
HIWAIT EQU ODH 06 =1

RESETLO EQU OEH ;C7 RESET CY500 WHEN LOW
NORESET EQU OFH ;C7 = 1 - DO NOT RESET

L

8755 P10

PoRT C (HEEH) PORT B (@EDH)

PORT A {BECH)

PORT B (@BFSH)

T REGLL
{MOTION COMPLETE}

s PULSE (LATCHED)
e—— FOR(INTREGZ)
te— PROG

CONTROL OUTPUT
o ROY/BUSY
e TOGGLE

]

—-‘!.!TR

——= EXT DIR

i W55 -TIL
== CLR PULSE LATCH
e ABORT

——= TRIGGER

——= AT
——=RESET

=D,
- DB.I
—= D
== DB,

= PSS (GREEM)
——m= FAIL (RED)
——s= TEST |N PROGRESS

el

= A5C1L/BIN

72

BINARY DATA PROGRAMMING EXAMPLE

The binary data mode is illustrated by the programs and timing

diagrams that follow:

TESTBINARY:

L¥I D,BINBUFFER
CALL SENDPARALLEL
RDYERROR?:

IN STATUS

ANT READY

JNZ ERROR ;false ready
TSTINTREQL:

IN STATUS

ANI MOTION

Ja& RDYERROR?
MVI A,GREEN

ouUT LEDS

JMP TESTBINARY

In the command mode, the
RDY/BUSY output remains low
after a GO command is received
until the CY500 finishes the
last of the N steps specified.
This is indicated by the END-
of-MOTION (INTREQ1l) outgut
{pin 37). The RDY 1line
returns high approximately 30
microseconds after the INTREQ1
goes low. INTREQl rises when
the next command is sent to
the CY500.

BINBUFFER:
DB 'Cc',0 ;clear pin 34
DE 'R',1,2880 :set rate para=200
DB ‘F'";1.,1 :set factor=l
DB 'N',2,5,0 ;set 5 steps
DB 'B',0 ;set pin 34
DB 'G',® :G0 command
DE OFFH ;STOPPER

SEND

NG

r
= READY e GEROR
(Swown
BT BEEURY
o
?
LEGHT
LED
INTREQ | |
ROY/BUSY i 1 1
-'Ivi = 30 WICROS ECOMDT

Figure 10.5 MOTION COMPLETE
Timing

MICROSECTND TIME “"1"5 E"Wl-w“"‘ll‘m'l'_'”_"%

ROV /EUSY

inllin

WR lf[Iﬁl

] -
2] L]

CONTROL

ﬂ~~—#mm¢-——*fr———aanf———#

Trigger scope display
using C output

Send C,0,B,0 in BINARY
command mode

Use WR to trigger scope

display of CONTROL
output(pin 31)

Figure 10.6 Binary Timing Example.

73

The parallel ASCII data is sent to the CY500 Stepper Motor
Controller using the 8080 SENFPARALLEL code shown below. In this

system the WRITE strobe is generated via a separate programmable

control line and is removed after the data is acknowledged by the
CYS500.

SENDPARALLEL ; SEND PARALLEL ASCII
£ BYTE
£ ENTERED WITH DE-REG ->
: NEXT BYTE
GETCHAR :
0059 1A LDAX D
0052 FEFF CPI OFFH : CHECK FOR STOFPPER
005C CA&T700 JZ QUIT
OO5F 13 INX D
0060 4F MOV C,A
0061 CD&EOD CALL SENDCHAR
0064 C35900 JMP GETCHAR
QUIT
oDe7 C9 RET
SENDCHAR:
0068 DBED IN STATUS
006A E&20 ANI READY
00eC CABB00 JZ SENDCHAR
O0gF 79 MOV A,C
+=—=ANT 7FH ; STRIP BIT 7
0070 D3EC OUT DATA ; SEND TO CY¥ 500
0072 3EQO MVI A,WRBAR
0074 D3EF OUT CONTROL : SEND WRITE STRORBE
WAITACKNOWLEDGE: : WAIT FOR RDY TO GO
! LOW {BUSY)
0076 DEBED IN STATUS
0078 E620 ANI READY
007A C27600 JNZ WAITACENOWLEDGE
007D 3EO01 MVI A, WRITEHI + REMOVE WRITE STROBE
O07F D3EF OUT CONTROL
0081 3EFF MVI A,O0FFH
0083 D3EC OUT DATA ; REMOVE DATA FROM BUS
0085 C9 RET

74

IMT REG 1

MOTIOW COMPLETE

W — .
‘Mo r?qJ B ¥
it v/ Bl) =l [
G —— 30 psec
ONTROL
E 1 [
Figure 10.7 Expanded Handshake Timing Diagram.
, C3BIR ZO) F 1) N 4 ' 16)
(omzn) (7t ; o) : NOTE LONGER BuUSY PERIOD
BUS/ROY - AFTER } ESPECIALLY WHEM

(P 367
PULSE

; DECIMAL TO BINARY COMVERSION
l . REGUIRED.

|
MGTH COMPLITE
[P aT) M

” USE MOTION COMPLETE To

Y

TRIGGER OSCYLLOSCOPE DISPLAY
'
_...'! 5 mBEC !-— E‘L

1
Figure 10.8 Complete Timing for Sample Program.

0022
oo02C

0D2F
0031

0033

0036
o038

003A

Q03D
003F

0041

0044
0046
0048
004cC
004E
0052
0056
0058

114400
CD5900

DEED
E620

C28600

DEED
E601

CAZFO0

3EFE
D3F5

C32900

430D
420D

52203232 DB 'R 220',0DH

300D

4620310D DB 'F 1',0DH
4E20330D DB 'N 3',0DH

470D
FF

iESTASCII: ; PARALLEL INPUT ASCII CODE
LXI D,ASCIIBUFFER

CALL SENDFARALLEL:SEND PARALLEL ASCII

RDY?LOOP:

IN STATUS
ANI READY
JNZ ERROR

IN STATUS
ANT MOTION

JZ RDY?LOOP

&
MVI A, OFEH + LITE GREEN LED
OUT LEDS

JMP TESTASCII ; LOOP FOR SCOPE DISPFLAY

; - — COMMAND STRINGS FOR CY500 - -

ASCIIBUFFER
DE 'C',0DH ; CLEAR OUTPUT LINE
DB 'B',0DH : RAISE CONTROL OUTPUT
; SET RATE PARAMETER=220

DE 'G',0DH : BEGIN STEPPING
DE OFFH : STOPPER FOR B0OB0 LOAD
; : ROUTINE

5

k-
=4 b =
g 2 : -
2E . $51 BE
g g, ¥ FiH 85
g ﬁg - agﬂ sg
28 858 §2

RESET —“ ! U ”
(PIM 43 . ' . ;
) | " :

A0 BUSY _ﬁ]’mm ;i | I m '1 ” |

{PiM 27} . i :

_ i : i :

PULSE BUTPUT J " “ " ”] ” ” “ " E |
(P 35) : | !

INTREGD {PIM 37}
MOTIOM COMPLETE

i] | [
e -

STEFPER OUTPUTS
(i, 2,9, %)

Figure 10.9 Timing for Program Shown Below.

The 8080 (or equivalent) sends the following commands and binary
data to the CYS500:

aes reset CY500 using pin 4

co clear control output (34) (trigger scope display)
R 1 FEH set rate parameter = OFEH

F1l2 set rate factor = 2

N 250 set number of steps =5

+ 0 set CW direction (redundant)

G0 begin stepping

After sending the above commands, the host computer polls the
MOTION COMPLETE output (pin 37) and, upon finding it active,
after the 5th step has been taken, the host delays a fixed time
interval and then loops back, resets the CY500 and repeats this
process. The control output may be used to trigger the
horizontal sweep circuits of a scope.

SCOFE

= PULSE
—= RN /BUSY
T mTREGQ1
“F*ToGGLE

Fing T

Figure 10.10 Test Setup.

76

11 IEEE-488 INTERFACE 11

IEEE-488 INTERFACE TO CY500

Using only a few SSI TTL gates, the CY500 can be made to work as
a LISTENER on the IEEE-488 or GPIB (General Purpose Interface
Bus). This section describes the timing and control involved in
the GPIBR interface and identifies the CY500 signal names with the
appropriate GPIB signals.

GPIB HANDSHAKE SIGNALS

The TALKER or device desiring to send 8 bits of data to the CY500
over the data bus uses the DAV (Data AVailable) signal that
corresponds to the WR line on the CY¥500. Before lowering the DAV
line the TALKER must test the NRFD (Not Ready For Data) line.
This line corresponds to the CYS500 RDY/BUSY line. When this line
is low, the LISTENER (CY500) is Not Ready For Data. When the
TALKER finds the NRFD line high then it can assert (lower) its
DAV write line to the CY500. Thus far, the interface 1is
identical to the standard CY500 handshake. The third handshaking
signal is an acknowledge line from the listener named NDAC (Not
Data ACcepted). This line must initially be low and is raised to
indicate that the data has been accepted by the CY500. The NDAC
line is tested by the TALKER to determine whether or not the
LISTENER has accepted the data. The CYS500 RDY/BUSY line actually
acknowledges the data transfer by going low, thus by inverting
the RDY line, an NDAC signal can be generated. This completes
the three line handshake required for the GPIB.

BUs

Figure 11.1 CY500/GPIB Interface.

77

BATALNES b -5 e

2
S

pav (DATA M 0, é_
AVAILABLE) | [iRue

o
y JFALSE o
fMI'fOE:I'DRE.&D‘r TRUE 1 { r% %
| | 3
FOR DATA) ‘[~ ' D
HEALEE
NDAC GEEE
(NOT DATA TRUE @ T :
ACCEPTED) “ (D

el —— + - 1 S T— — L
I T T Ty g

Figure 11.2 GPIEB Handshake Signals.

The flowchart for the TALKER that controls the CY500 is shown in
figure 11.3. This procedure can be implemented simply using any

microprocessor and describes the manner in which most GPIB
interface devices function.

TALKER LISTENER

START

ARE
MEFD AND NDA
; YES
FON BID LiNgs. Yo
! END .
DELAY ~OR DATA . GE.LW___,
TO SETTLE i ﬁﬂﬁ-ﬂ‘i& ey Ty
WRER T S FTED L
—
E ik « mm‘i".":--"
HIGH? S ANE SET NRFD LOW
L
ki uhjff- -
-
)
SET Dav LOw
WOAC LINEST A5 LOW UNTIL ALL AEI:-E_PTEE!E_ 35T ROAE FIGR
| . — — — — — — —
i @ T TWAVE ACCEPTED DATA
o THE DATA SO CORSOEREDUNUALLD

——— == T TLETER THIS TIME

SET DAV HIGH

YES
SET NDAC LOW

Figure 11.3 TALKER/LISTENER handshaking procedure.

T8

GPIB INTERFACE MANAGEMENT SIGNALS

In addition to the three line handshake, there are several other
control lines defined by the IEEE-488 interface specifications.

These are described below and identified with appropriate CY500
signal lines.

IFC
—_— | | RESET (pin 4)

—-—I |—— 100 msec

Interface Clear goes low after power on. This line is
used to reset the CY¥500 and can replace the power on

startup circuitry.

SRQ i
|| INTREQ1 (pin 37)

#1...END OF MOTION

#2...—>o— RON

Service Request is used to inform the TALKER that the
LISTENER (CY500) has completed an action and is ready
for more commands. "

ATN WR=DAV -
ATN

The Attention line is used to signify that the data on
the bus is a device address. For multiple CY500s this
may be used for selection. The ATN line should inhibit
the CY500 WR line. Note that ATN may also be used to
prevent the CY500 from seeing line feeds (0OAH) sent
after linends (ODH) as is done by many BASIC language
controllers.

79

IEEE-4888 TALKER SENDS CY500 STEPPER MOTOR

COMMANDS TO CYS500 CONTROLLER RECEIVES
COMMANDS

@Eﬁ§51uﬂu) ETH
e B o s

(PIN 1}

mﬁﬁ-‘ ROY/Busy

TS (PIM 1)

NDAC .._._‘,Q_

Sfa INTREGL
~ LPIM 3T

1FC RESET

{PId 4)

ploi-8 [EEE B

Figure 11.4 Simple IEEE-488/CY500 Interface.

In some systems the REN (Remote ENable) and EOI (End Or Identify)
IEEE-488 control signals may be useful. For further information
on the TEEE-488 interface the reader is referred to the following
references:

IEEE STANDARD 488 - 1978
available from
IEEE Service Center

445 Hoes Lane
Piscataway NJ 08854 USA

PET and the IEEE 488 BUS
by Fisher and Jensen, 1980

Osborne/McGraw Hill
630 Bancroft Way

Berkeley CA 94710 USA

80

12 GETTING YOUR CY500 RUNNING 12

Getting Your C¥500 Running

The following checklist will simplify getting your CY500 up and
running.

1. Be sure that pin 7 is grounded and pin 26 tied to +5 wvolts.
2. Be sure that pin 39 is high.

3. Set pin 33 high to select ASCII input, set TRIGGER (pin 30)
low for now.

4. Be sure RESET (pin 4) is low for at least 10 millisecnndg
after power stabilizes. The CY500 can be reset at any time.

5. Upon proper reset all output pins should be at logic 1
(>3 volts).

6. Observe the RDY line (pin 27) to be sure it is high.

7. Observe the CLK/15 (pin 11).
C_ornn 400 KHz with 6 MHz Xtal.]

B. Place the CLEARBIT command C (=43H) on the data bus.

DEO
DE1

DB2
DB3

DB4

DB5
DB&

DB7

W mw e o

OO OO0 - -

9. Lower the WR line (pin 1).

10. Wwait for the RDY (pin 27) to go low before bringing WR high.
If using automatic WR strobe circuitry that generates low

write signal when ASCII character is placed on the bus (as

in figure 2.1 in manual) be sure that your software detects
low RDY line before loocking for High RDY. 1If you are using
a debounced keyboard this should not be a problem.

11. When WR is brought back high, RDY will return high.

B1

12.

13.

14.

15.

16.

b & G

18,

12,

20.

Wait for RDY to return high before placing the RETURN code
(p)=0DH) on the data bus.

pin 12... DBO
DB1

DB2

DB3
DB4

DB5

DB&
pin 19... DB7

owwmwn

OO0 OO0 OH-

Generate the low WR strobe until RDY goes low, then return
WR high as before.

Upon completion of the above sequences of steps, the CONTROL
output (pin 34) will go low.

Repeat steps 8 through 14 replacing C (=43H) with B (=42H).
This BITSET command will cause the CONTROL output {(pin 34)
to return high. All other outputs (except RDY) should have

remained high during the above procedure.

Repeat steps 8 through 14 replacing C (=43H) with O (=4FH).
This is the ONESTEP command. The result of this command
will be to bring the Pulse Line (pin 35) low (and leave it
low) and to apply the stepper control signals (on pins 21-
24). The toggle line (pin 36) remains high.

1f succeeding ONESTEP commands are given, the pulse line

will pulse high at the beginning of each step {—-J1————-)
and the toggle line will change state with each step. The

stepper control lines will step your motor in the clockwise
(CW) direction.

If you have reached this point successfully you should be

able to enter any of the commands and obtain the correct
responses.

Suggested segquences:

a. enter E) followed by 0O and observe the PROG (pin 31) go
low with E} and return high with Q.

b. raise the TRIGGER (pin 30) and enter the ONESTEP command

(0}). Nothing will happen on pulse, toggle, or the
stepper contrcl lines until the TRIGGER line is lowered.

c. refer to figures 9.7, 9.8, and 2.9. Enter these
commands as listed and observe the outputs. HNote that
LEDs on the relevant outputs are wvery useful.

After initial checkout is accomplished using ASCII input,

the user may place pin 33 low to select binary. Read the
manual carefully for differences in the two modes.

82

ASCII-DECIMAL TO HEX CONVERSION TABLE

i DEC HEX DEC HEX DEC HEX DEC HEX | DEC HEX ASCII HEX
0 00 51 33 102 66 153 99 204 cC CR 0D
L. oA 52 34 103 67 154 9A 205 CD SP 20
2 02 53 35 104 68 155 9B 206 CE + 2B
3403 54 36 105 69 156 9C 207 CF , 2
4 04 55 37 106 6A 157 9D 208 DO - 2p
5 05 56 38 107 &R 158 SE 209 pl
6 06 57 39 108 6C 159 9F 210 D2 0 30
. 707 58 3A 109 6D 160 A0 211 D3 I 31
e 8 08 59 3B 110 6E 161 Al 212 D4 - 2 32
' 5 09 60 3C 111 6F 162 A2 213 DS 3 33
10 0A 61 3D 112 70 163 a3 214 D6 4 134
11 OB 62 3E 113 71 164 A4 215 D7 5 35
12 0cC 63 3F 114 72 165 A5 216 D8 & 136
| 13 0D 64 40 115 73 166 A6 217 D9 a2 AR
| 14 OE 65 41 116 74 167 A7 218 DA 8 138
(15 OF 66 42 117 75 168 A8 219 DB 9 139
16 10 67 43 118 76 169 A9 220 DC
17 11 68 44 119 77 170 AA 221 DD A 41
18 12 69 45 120 78 171 AB 222 DE B 42
15 13 70 46 121 79 172 AC 223 DF C 43
20 14 71 47 122 7a 173 AD 224 EO D 44
{21 15 72 48 123 7B 174 AE 225 El E 45
22 16 73 49 124 7IC 175 AF 226 E2
23 17 74 4A 125 7D 176 BO 227 E3 F 46
24 18 75 4B 126 TE 177 Bl 228 B4 G 47
<5 18 76 4C 127 7F 178 B2 229 E5 H 48
26 1a 77 4D 128 80 179 B3 230 E6 I 49
27 1B 78 4E 129 81 180 B4 231 E7 J 4A
28 1C 79 4F 130 82" 181 B5 232 E8
29 1D 80 50 131 83 182 B6 233 E9 K 4B
30 1E 8l 51 132 84 183 B7 234 EA L 4C
31 1F 82 52 133 85 184 B8 235 EB M 4D
32 20 83 53 134 86 185 B9 236 EC N 4p
33 21 84 54 135 87 186 BA 237 ED 0 4F
314 22 85 55 136 88 187 BB 238 EE
35 23 86 56 137 89 188 BC 239 EF P 50
36 24 87 57 138 B8a 189 BD 240 FO Q 51
37 25 88 5B 139 8B 190 BE 241 F1 R 52
38 26 89 59 140 8C 191 BF 242 F2 s 53
39 27 90 SA 141 BD 192 CO 243 F3 T 54
40 28 91 5B 142 8E 193 C1 244 P4
41 29 92 5C 143 8F 194 C2 245 F5 ¥y 55
42 2A 93 5p 144 90 195 C3 246 Fé6 Vv 56
43 2B 94 S5E 145 91 196 C4 247 F7 W 57
44 2C 95 5F 146 92 197 C5 248 F8 X 58
45 2D 96 60 147 93 198 C6 249 F9 Y 59
46 2E 97 61 148 94 199 C7 250 FA Z SA
47 2F 98 62 149 95 200 c8 251 FB
48 30 99 §3 150 96 201 c9 252 FC
49 31 100 64 151 97 202 CA 253 FD
50 32 101 65 152 98 203 CB 254 FE
255 FF

I

83

position.

ASCII-DECIMAL OR BINARY COMMUNICATION
SIMNGLE S VOLT POWER SUFPLY

25 HI-LEVEL LANGUAGE COMMANDS
STORED PROGRAM CAPABILITY
HALF-STEP/FULL-STEP CAPABILITY
ABSOLUTE/RELATIVE PCSITION MODES
PROGARAMMABLE VIA ASCI KEYBOARD
000+ STEPS PER SECOND (11 MHz XTAL)
PROGRAMMABLE OUTPUT LINE

TWO INTERRUPT REQUEST QUTPUTS
MORE LINEAR RAMP THAM CY500
HIGHER RATE RESCLUTION THAN CY500
FROGRAMMABLE DELAY

| PIN CONFIGURATION

& & & & & 8 B B OF & B B @

Tt

-

40— +5 VOLTS
xiaL {—-- bat— T/ SELECT
g P f~a— WAIT PROGRAM
it - CYB512 | romion cameiere
UNUSED — e ASC11/BTH
TERMINATE/ABORT -~ - POLSE
I o= PROGAAMMABLE OUTPUT
INSTROBE —=—] —= DIRECTION
UNUSED — == AN [INT REQ 2)
OUTSTROBE —=—| = PROG
CLK/15 —=—] INTELLIGENT [==— STEP INHIBIT
Di;~===] POSITIONING [3LEW
08 ~-= STEPPER [=— DO-WHILE

140 REQUEST =y

W] o oTOR
CONT R i

08, et ROLLER L ymusen

D8 et == s STEPPER

D =i s MOTOR

OB, —=-r—r o DRIVE
£l a1 =g siGNALS

The CY512 intelligent positioning stepper motor controller is a
standard 5 volt, 40 pin LSl device configured to control any 4-phase
stepper motor. The CY512 will interface to any computer using parallel
TTL input and provides numerous TTL inputs and outputs for auxiliary
control and interfacing. The CY512 allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed upon command. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor
arrays. When absolute position commands are executed, the CY512 automatically
determines whether it is necessary to move CW or CCW to reach the specified targst

STANDARD FEATURES

LI B B B B B R B I I

SOFTWARE DIRECTION CONTROL
HARDWARE/SOFTWARE START/STOP
'BBORT CAPABILITY

AUTOMATIC DIRECTION DETERMINATION
RAMP-UR/SLEW/RAMP-DOWN

VERIFY REGISTER/BLUFFER CONTENTS
STEF INHIBIT CPERATION

‘DO-WHILE AND "WAIT-UNTIL' COMMANDS
JUMP TO' COMMAMND

SEVERAL SYNC INPUTS AND QUTPUTS
'SLEWING INDICATION OQUTPUT
'"TERMIMATE' STEF LINE FORMAX ACCELERATION
LOOP COMMAND WITH REPETITION COUNT

LOGIC DIAGRAM

+5 VLT
PARALLEL
DATA BUS STEPPER
70 REQUEST — s) coNTAOL
iNSTROBE —a—tm }— PULSE
UTSTROBE ~a—fem = SLEW
e - DIRECTION
BUST/READY MOTION COMPLETE
_MSCU/BIN — == INT RE) 2/RUN)
170 SELECT = PROGRAM COMPLETE
O0-WHILE 5 o PROE ENTRY
e ¥ m BTORE | ™ ==
TERMINATE/ ABOAT ; = HTAL
STEP INHIBIT S |
WAIT UNTIL A = PROGRAMMABLE
pecane QUTRUT
i

CyberneticMicroSystems g,

@ CYBERNETIC MICRO SYSTEMS 1881

WR/

Xtal 1
Xtal 2
Reset/
Unused
Abort/
Gnd

RD/
Unused
Reserved
Clock/15
DBoO

DB1

DB2

DB3
DB4

DB5 E

DBE&
DB?
Vss

CY500 Summary

CY500 Pins

CY500 Commands

Vee (+5v)

+ 5v

Wait (Program)
Motion Complete;
Toggle

Pulse

Control
ASCII-Binary/
Runy/ (Int Req 2)
Prog/

Trigger/

Ext Direction
Ext Start/-Stop
Busy/-Ready
+5v

Unused

Motor Phase 4
Motor Phase 3
Motor Phase 2
Motor Phase 1

TMmo QD e

—

3

-

W TJOTVOEZ Fe=—IO

©, 4 X=c-

Athome zero position

Bitset Control line high
Clearbit Control line low
Doitnow, execute stored prog
Enter program code

Factor divides rate value

Go, step relative

Halfstep mode

Initialize

Jog using ext start/stop line
Left-right step from ext pins

Number of Steps

Onestep at a time

Position for stepping

Quit entering program code
Rate, maximum step rate

Slope of accel/decel

Til pin 28 high, loop thru prog
Until pin 28 low, wait here
Wait for pin 38 to go high
eXpend milliseconds

CW direction
CCW direction
Resume Command mode

