T “_ . 1:5_': . P s
)

INTELLIGENT POSITIONING
STEPPER MOTOR CONTROLLER

3F:CYS512MAN.DOB 1 JUNE 83 KTM FRINTED IN U.S.A,

Cybernetic Micro Systems software products are copyrighted by and
shall remain the property of Cybernetic Micro Systems, Inc.
Duplication is subject to a license from Cybernetics. Cybernetic
Micro Systems, Inc. reserves the right to make changes in its
products without notice in crder to improve design or performance
characteristics. Cybernetic Micro Systems, Inc. assumes no
responsibility for the use of any circuitry other than circuitry
embodied in Cybernetic products. No other circuit patent
licenses are implied.

Information furnished by Cybernetic Micro Systems, Inc. is
believed to be accurate and reliable. However, no responsibility
is assumed by Cybernetic Micro Systems, Inc. for its use, nor for
any infringements of patents or other rights of third parties

which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of
Cybernetic Micro BSystems, Inc. Further, Cybernetic Micro

Systems, Inc. reserves the right to revise this publication and

to make changes from time to time in the content hereof without
obligation to notify any person or organization of such revision
or changes:; and Cybernetics assumes no responsibility for any

errors which may appear in this document and makes no commitment
to update the information contained herein.

The following are trademarks of Cybernetic Micro Systems, Inc:

Bin-ASCII
CYMPL
Analog-ASCIT
ASCII-Analog

Copyright 19283 by CYBERNETIC MICRO SYSTEMS, INC.

All rights reserved: no part of this publication may
be reproduced without the prior written permission of

Cybernetic Micro Systems, Inc.

Box 3000 » San Gragorio CA 54074 LISA
Tel: 650-725-30C0 « Fax: 650-726-3003
woarws, Control Chips. com
irfo@ControiChips.com

L

The CY512 intelligent positioning stepper motor controlier is a
standard 5 volt, 40 pin LS| device configured to control any 4-phase
stepper motor. Tha CY512 will interface to any computer using parallel

TTL input and provides numerous TTL inputs and outputs for auxiliary
control and interfacing. The CYS512 allows sequences of hi-level type commands to

be stored internally in a program buffer and be executed upon command. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor

arrays. When absolute position commands are executed, the C¥512 automatically
determines whether it is necessary to move CW or CCW to reach the specified target
pasition.
STANDARD FEATURES
* ASCI-DECIMAL OR BINARY COMMUNIGATION s SOFTWARE DISECTION CONTADL
» SINGLE 5 VOLT POWER SUPPLY s HARDWARE/SOFTWARE START/STOP
» 25 HI-LEVEL LANGUAGE COMMANDS s ABORT' CAPABILITY
» STOAED PROGRAM CAPABILITY « AUTOMATIC DIRECTION DETERMINATION
» HALF-STEF/FULL-STEF CAPABILITY s RAMP-LP/SLEWRAMP-DOWN
I s ABSOLUTE/RELATIVE POSITION MODES » VERIFY REGISTER/BUFFER CONTENTS
« FROGRAMMABLE V1A ASCI KEYBOARD * STEP INHIBIT OPERATION
« 8000+ STEPS PER SECCOND {11 MHz XTAL) * 'DO-WHILE' AND 'WAIT-UNTIL COMMANDS
» PROGAAMMABLE OUTPUT LINE « JUMF TS COMMAND
s TWO NTERRUPT REQUEST OUTPUTS » SEVERAL 5YNC INFUTS AND DUTPUTS
s MOAE LINEAR BAMP THAMN CYEDG * 'SLEWING INDICATICN QUTRUT
s HIGHER RATE RESOLUTION THAMN CY500 s ‘TEAMINATE STEP LINE FOR MAX ACCELERATION
s PROGRAMMABLE DELAY * LOCP COMMAND WITH REPETITION COUNT
PIN CONFIGURATION LOGIC DIAGRAM

Cybernetic Micro Systems

® CYBERMETIC MICRO SYSTEMES 1281

TR s +3 WOLT
170 AEQUEST e 1 40 b= 5 v0LTS
oL { ™ et T/ SELECT PRRALLEL
ATALY ol L WAIT PROGRAM DATA BUS STEPPER
fset —= CYH12 | MoTion conLeTe =T 4) CONTROL
UNUSED — e ASCIL/BTN e FULSE
TERMINATEZRBOAT —w o FULSE - e ER
= - PAOGRAMMABLE DUTFUT DUTSTROBE ~ar—i e
I INSTROBE —~=e— [—a=- QIRECTION T W | (%= DiEeTIoN
UNUSED — =W |INT REQ | —_ | T REQT
OUTSTROBE === = P0G BISHREADY e MOTION COMPLETE §
CLES|5 ~=— INTELLIGEMT [=F STEP INHIBIT ASCI/ETH — |NT RE] Elﬂﬁl
E:nﬂ—- POSITIONING +::iE‘:H+LE 10 SELECT PROGRAM COMPLETE
e STEPPER P g PRAD. PROC
ey MOTOR | BUSY/READY 00-WHILE m— FROG ENTRY
0B;—==4 ~oNTROLLER [-6 VOLTS TERMINATE/ AEORT LEACTUR |) s7oRs oS ATAL
T e e — UNUSED STEP INWIBIT sz eva ==
' ’;:f; e Bessiagl Vi WAIT UNTIL e o PADGHAMMABLE
DB, =—— e] ORIVE & EXEL.
i Iq20 o1 =3, SIGNALE

TABLE OF CONTENTS

SECTION 1
INTRODUCTION TO TBE C¥512

CY¥512 Intelligent Positioning Stepper Motor Controller...... &
Stored Program Peripheral Controller...cessssssssevssserssseB
Architecture of the CY¥512 Stepper Controller.isecessssaceessd

Absolute vs. Relative Position.i.c.e..cenen.. TR PR 11
SECTION 2
OVERVIEW OF PIN FUNCTIONS
Communication with C¥512...... R R e i saaseall
Keyboard Programmable DevicCe..veivinanass sisvreiserasavarevall
Synchronization Mechanisms ...ceeceaneenn SR R R RSP SEC b
C¥512 Pinout Diagram..... SRR A R e e e e e .14
CYS512 "Pin: Desgriptloniiii.vie N i P S 15
SECTION 3
OVERVIEW OF CY¥S512 COMMAND LANGUAGE
'Ein_ﬂSCII-TMFeEturEl-ll'l!‘..lli.i“- ------------- 'll"..ll‘.lltl?
High-Level Language Design Facilitates Programming......... 18
CYSlz Command Summary SN EA S SRR S R PR T iR R !O!!P.!llg
Defcription of ComBANASE siciccerssovresstnsnssissitssssnnsss 20
SECTION 4
DETAILED EXAMFPLES OF COMMANDS
Reset Command tInitialiZE] EE SR RS R R R s TSR l!'.'iizﬁ
Program Execution Mode: "Run" mode operaticn.isecececscacss 26
H-O'me Pusitionllll..lbti-t#'..liii lllllll % % & % % % & WA a0 |l|126
Program Looping, IteratioN..siesscssasnanss vessssrsnasenanac2Bh
WElding HaChine Example A EEE SN FE ErA A A AN 'i!.!l..ttiBﬂ
Operational Mode SUMMALY veava. RN A e e e
SECTION 5
BINARY DATA MODE OF CY512 OPERATION
Binary Data Mcﬁe!'ll‘....l-l'iilll'll--liiﬂliiliiil- lllllll 1!‘#'32
IntErnal Program Storage A S F RS AP ST A r A A A AN "‘"...l.‘..ll“34
Interface ExXxampPle.iceccenass SR P o =
SECTION 6

READ-QUT OPERATIONS OF THE C¥512

verify MDdE GPeration ----- * &% ¥ P R FE TS A LU L L L 3?

SECTION 7
C¥512 TIMING AND CONTROL INFORMATION

C¥512 Handshake Timing Information...sevececsesvecsaveanenadl

Doitunow "Ron® TImingceevesseemsseasss G svesnsasessedl
Step InHibit Pin.uescosswnpans e T Py R (.
Direction CanErol coeeeees s b dbe e s b 42
Step Timing Signals ..eesisensrssassnsrrsnsansassssansonarasd3d
Stop Operatlob.iciiveciodicdiniyyva veasasnssrsnanenssresessdB
Softward Aborticueooesusibe vy RN e e P R R S SR
Half Bhep or Full Step . iciicivassevsunins e e

SECTION B8

CY¥512 STEP RATE INFORMATION
Rakbe CONELEl sunrveserssnssnsrsnscssrnssrirsmes e ssss s sesss 49
Ramping Mode of Operation...csensssssscsnnssmassssscennmns v L
Display of Ramped Operation..... R R 54
Slew Mode COperatiof.cececcecssenssass P X -
Closed LOOP Cﬂntral'I..'l...li..Il.li.l.i.li.li.i.liiiii‘[.ng

SECTION 9

C¥512 ELECTRICAL SPECIFICATIONS
Operating CharacteristiCs seivenensanancananaa reanan sennanesbl
Blegtrical ConventionS e e canssmsssnsesmtmensnnnseensssssss 61
BOEEL 00 D O U TV i nnmm s o o 055 50 5o 0 g win s o
Clﬂck circuits.‘b. llllllllllllll illl!!"'l'iiiil...i..illIiﬁz

SECTION 10

MISCELLANEOUS CIRCUITS AND EXAMPLES
YRI5 BEl wovpiismuii ey ies e e e ok
Test Demonstration Clrcuit cisciscicisedinnsittdiessasnnsnans 64
Driver Cirguit ConsiderationsS.....esseesestsenncnsnnnaacana 65
Handshake Protoccl'lll'l'!l##!!l.‘!f"'...Ii..iittiiittiht.t.iﬁs
Operation of Sewveral CY¥512s Using a Common Data BuS..ceuva.. 69
SYNCHEDNIZaLion of TWo EBY¥S51 28.cuisvunsmuiniegs vus s i s 70
Coordination of Several CY5128,. . veeveeessnnsnnans TR R e 2

Example Prﬂgrams and WavEE(:'rms-l-ii!!!!!l!liiiiiiiiiiliiii-?z
RS-EBZ_C R&GEi‘FE Dl’.’ll? IntEIface Design ...'.iiililitii-i--i-?E

Prom Stand-alone Interface Design....... P M R SO, 77
SECTION 11
COMPUTER CONTROL OF CY512
Computer Control of C¥512........ O B AT 79
Enter/Quit Programming Mode...scessiassvesrssasacinsansssss .79
CY512 Stanﬂ—alﬂl‘le ﬁpPliC&tiOﬂE ------- --1---o-ooloototoolitvau
Prﬂgrming Exa—mples !!!!!! -!liiiiiiil"lil...‘.iiii‘ll!iilisl
Equate Table for Programming ExampleS....essesececsennaacnas 82
Binary Data Programming BXample..s.:ricessssvovasssanannsnnas 83
Handshake Subroutine...iwveisviedssesoeuiieed sl T 1 . |
ASCII Data Programming Example....ccccvesssnncancaaaasaansna + 85
Oscilloscope Display BXa@mMPle .. ciranerrencaasssnns Pl e L

SECTION 12
IEEE-488 INTERFACE TC CY512

IEEE_4BB Interface e B A B R e R Ema e ill--1--;-4-.-.....5...5#3?
GPIB Handshake SignalsS .ccceeescecsccsannancnnssassse e ey L
GPIB Interface Management SignalsS....eiecessrerersnssssnsses89
GPIB Schematic EXaMPle, .o rsrrssssssssenssnsssnnnnnnnnanns 21
SECTION 13
GETTING YOUR C¥512 RUNNING
Start_up Prﬂﬂedure ------ L T R -o-oooooiigs
IHDEX -------- P R E E R E R R R e T R I e 9?

Figure 1.1 Controller evolution, boxes to boards to chips.

The next design phase reduces the random logic of the translator
modules into a small number of integrated circuits. About the
same time these chip sets became available, the low cost computer
came into fashion. It became a natural source of input signals
to run the stepper motor controller chip set, providing a pulse
train te the translator module. If the loading of the motor was
such that acceleration and deceleration was reqguired, then the
computer provided the timing of the pulses to affect the
acceleration. 1If, further, the position control required complex
motions that were relative to either the current location or to
some absolute coordinate system, then the computer also provided
these calculations. If the seguence of motions was to be
synchronized with other external events, the computer provided
such synchronization. At this point, the control of motion
became a non-trivial problem, and the programming of a computer
to provide this control represented a major design effort., 1If
not one, but many, motors were to be controlled, the prcblem
became even worse, and quickly exceeded the capabilities of the
low cost computer.

At this point the single-chip stepper motor controller was
introduced, culminating the controller evolution by placing all
the control logic into a single part. The advantages of a single
controller I.C. are increased system flexibility and reliability,
and decreased overall systems coskt.

The C¥512 Intelligent Positioning Stepper Motor Controller not
only contains the timing logic of the earlier bulky designs, it
also offers parametric control over step rate, acceleratin rate,
number of steps, and direction of stepping. 1In addition, an
internal program buffer can be used to store commands and repeat
complex motions, and secondary control lines allow these motions
to be synchronized with events external to the motor itself. The
central computer can now easily control sewveral motors and take
care of system level tasks, while a smart controller handles the
details of running each motor.

INTRODUCTION TO THE CY512

INTELLIGENT POSITIONING STEPPER MOTOR CONTROLLER

The C¥512 is an ASCII-programmable, peripheral controller chip
designed to control stepper motors using an instruction sequence
that may be stored internally in a program buffer. This feature
allows the user to program the device with an ASCII keyboard and
vastly simplifies prototype development and experimentaticn. When
the user decides that the control segquence is correct, the ASCIT
keyboard is replaced by a computer output port, and the motor
can be brought on-line. Of course, the computer can be used
initially in those systems in which keyboard programming is
impractical, but most applications can usually benefit from the
immediacy of the keyboard during the development phase. In this
mode the user simply types a command on the kevboard and the
controller takes the appropriate action. In the Command Mode, the
contreller simply executes the command. In the Programming Mode,
the command is stored in seguence in the on-chip program buffer
for later execution,

Early stepper motor controllers consisted of bulky boxes
controlled by switches and buttons. Step rates were set in
hardware, as were the acceleration and deceleration
characteristics, Switches were used to set the number of steps
and direction of stepping. Buttons were used to actually start
the motion. These controllers were obviously meant for manual
operation. They were very expensive, very heavy, and very large
when compared to the motors to be controlled.

In the next stage of controller design, the functions of the
controller boxes were designed onto single PC boards. These
significantly reduced the cost and packaging requirements, but
did not increase the capability of the controller. One important
benefit of this design was the ability to simulate switch inputs
electronically, allowing another machine to command the
controller. Pulse-to-step translator modules, still popular
today, are also designed in this format. They require pulse and
direction inputs, and translate these signals into the driving
waveforms for the motors. Some translators also incorporate
acceleration and deceleration capabilities.

STORED PROGRAM PERIPHERAL GONTROLLER

The Cybernetic Micro Systems C¥512 Intelligent Positioning
Stepper Motor Controller is the second peripheral controller
device to offer the user stored program capability, following the
example set by the CY500 Stored Program Stepper Motor Controller.
This feature significantly increases the power of the device and,
as a consequence, decreases the amount of host time and software
required to perform a given task. Stored program devices operate
in three basic modes:

P R R e R RN R e L P N IR R R R R R R
% 5 |

Command execution mode

The £¥512 executes commands as
they are received.

Program entry_mode

The C¥512 stores commands in an
internal program buffer for
later execution.

Program execution mode

The CY¥512 executes the commands
that were previously stored in
the program buffer.

%
R A L e R E T R R R R LT IR LR R R

In addition to the Command Execution mode common to all
peripheral contrcllers, the stored program controller can be
placed in a Program Entry mode in which the sequence of commands
is entered and stored in the program buffer, and then the device
can be placed in the Program Execution mode in which stored
sequences of commands are executed. The ASCII command language
allows the user to program the device with an ASCII keyboard and
vastly simplifies prototype development and experimentation. The
keyboard can of course be replaced by a computer output port, and
the functions generated on-line. However most applications c¢an
benefit from the immediacy of the keyboard during development.

In many applications the user will find that the C¥512 can
function as a stand-alone device, completely independent of the
host processor, except for program lcocading. In most of these
applications, it may be possible to generate custom devices that
load the desired program upon power-up and are triggered by
external hardware. The user can then employ these custom
controllers in stand-alone applications with no host. See PROM
Stand-alone example in Section 10.

ARCHITECTURE OF THE CY512 STEPPER GONTROLLER

The C¥512 architecture BIGIRECTIONAL T STEPPER MOTOR.
may be partitioned - DRIVE TRANSISTORS

into several func- . DATAE

tional subsystems:

._ OUTPUT REGISTER]

1. Input data
subsystem

2. Output data
subsystem

16-BiT STEP COU

. 1e-BIT POSITION REGISTER ¥
. EATE I ' FACTOR]

3. Program para-
meter storage

4. Mode flags and
pins

. SLOPE]

_ MODE FLAGS

5. Program storage

RAM BUFFER
buffer ;WFGA At

BYTE @
6. Instruction I;Ei;
selection,
decoding, INSTRUCT|ON :
and control PECODIMG
mechanisms SECDMTGL :
g UBSYSTEM BVTE 47

7. Position
Register

Figure 1.2 Schematic diagram of the
architecture of the C¥512 Intelligent
Positioning Stepper Motor Controller.

Input and Output Data Subsystems

The input data subsystem accepts commands and the output data
subsystem holds the output control signals to the stepper drive
circuitry and includes the associated direction and pulse timing
lines,

Program Parameter Storage

The program parameter storage subsystem is used to store the step
rate parameters, ramp rate parameter, and to maintain a 16-bit
position register. The position register is incremented (or
decremented) when stepping in the clockwise (or CCW) direction.
The position register is used when absolute position commands are
specified. The 1l6-bit step counter is used when relative
commands are employed. The contents of the position register
change with every step, while the step counter register contents
remain unchanged until a specific command is used to change them.

Mode Flags and Pins

The mode flags and mode select pins are used during command
execution to perform the appropriate action or to interpret data
or input signals correctly.

Program Storage Buffer

The CY¥512 contains a program buffer that allows the user to store
a sequence of instructions that can be executed upon command.
This provides all of the benefits of stored program execution
that have made computers such powerful tools.

Instruction Decoding and Control
This subsystem performs the actual execution of commands.
Position Register

The CY¥512 ccntains a 16-bit position register that can be read to
determine the current location. The CY¥512 will acgept relative
and absolute position commands; however, the position register
always indicates absolute position.

ABSOLUTE VS. RELATIVE POSITION

The CY¥512 default mode is the relative position mode, in which
total travel is specified relative to the current position via
the Number (of steps) command, N n), where 0<n<216-1 (65535). 1In
this mode an internal counter is decremented for each step (or
half step if appropriate) and stepping continues until the count
reaches zero (0or another Halt condition iIs detected). If the
Position mode command, P p), is received, the target position "p"
is interpreted as absclute position with respect to the zero
location declared by the Athome command. The C¥512 calculates
the stepping direction and the number of steps to take to reach
the specified target position. After moving to the specified
position, the system reverts to the relative mode. Note that the
relative mode is selected by the G command, and the absolute mode
is selected by the P command. When an actual stepping operation
is in progress, both a number of steps walue and a target
position are used to internally execute the step command. The
current position register is updated in both the relative and
absolute modes, so motions may be mixed between the modes. In
relative mode, the target position will be calculated, and in
absolute mode, the number of steps to take will be calculated.
After that, the two modes use the same internal stepping
routines., Acceleration and deceleration work in both stepping
modes, with the CY¥512 also calculating the position at which to
start deceleration in order to return to the starting step rate
when the motion is completed.

10

OVERVIEW OF PIN FUNCTIONS

COMMUNICATION WITH CY512

Commands c¢an be issued to the CY512 using a parallel data format.
In parallel operation, complete handshaking operation oeccurs via
the use of a Busy/Ready line on the C¥512, and the I/0O Reguest
strobe line from the host. The handshake protocol is shown below.

Data to C¥512 Data Bus VALID DATA
from Master from Master ON DATA BUS
__________________________ H
Master Write I/0 Request == \
Signal to C¥512 from Master { .
,. 3

Stepper Ready Busy/Rdy - ,J -
pin to Master from CY512 \'*-l__r—,
Figure 2.1 Handshaking protocol for CY512 parallel input.

KEYBOARD PROGRAMMABLE DEVIGE

The CY512 Stepper Motor Contreller offers Hi-Level Language
programming with an ASCII keyboard. This design allows the user
maximum utility via the closest possible coupling and facilitates
interactive prototype development and debugging. HNote that the
stored program capability makes it possible in many cases to
perfect the operation of the stepper motor completely decoupled
from the host computer, In such cases, the host processor is
required to do little more than load the pregrams at appropriate
times. Of particular importance in many applications is the
dynamic stability of the system. By programming a range of test
conditions through the keyboard, the designer may exercise the
system over broad ranges and thus characterize the system
dynamically., Of course, any designer with access to an easy-to-
use, interactive host computer can achieve everything that the
keyboard user can, and more. Lacking such systems, the designer
will appreciate the extreme power of keyboard programming during
prototyping phaseés, thus postponing until final systems
integration the slower, costlier, host computer programming
associated with all host-controlled controller devices.

=5

SPRAGUE “

LN BEE4E 4 PHASE F

LEC -DECIMAL ZaTABUS | SY 512 b a STESPER]
! waTns Ji

Ly]
] A

CONTROLLER
|OR ECHII.) i
CANEAVOLTAGE 4

Figure 2.2 Simplest Prototype Development System.

LR

11

SYNCHRONIZATION MECHANISMS

Most stepper motors are employed as parts of functional systems.
These systems often must synchronize the behavior of the various
subsystems to each other or to a real-world occurrence, such as
an operator input. The CY512 has bheen designed with both =ignal
emitters and detectors to allow easy synchronization of the
device to neighboring {interacting) subsystems.

The motor interface for the C¥512 is very simple, consisting of
six ocutput signals. Since the controller is designed for four
phase motors, there is a signal line for each phase. The
patterns necessary to operate the motor in a full step or a half
step mode, including sequencing for proper direction, appear on
the phase outputs. A simple L/R type driving circuit may be
connected directly to the phase cutputs, so the motor can be run
from the controller signals. Alternatively, the user could drive
a more sophisticated pulse-to-step translator, using the C¥512
Pulse and Direction outputs. The Pulse line gives one pulse at
the beginning of each step, while the Direction line always
indicates the current stepping direction.

¢ =DIRECTION

Figure 2.3 Motor Interface

The computer or data interface of the C¥512 is also very simple.
Commands and parameters are passed from the command source to the
C¥512 on an eight bit, bidirectional data bus. Direction of data
ig determined by the level on the I/0 Select line, allowing the
C¥512 to not only receive commands, but also to be interrogated
for the current values of its parameters and contents of the
program buffer. Data transfer between the command source and the
CY¥512 is controlled by a standard two-line handshake protocol.
The master processor waits for the C¥512 Busy/Ready line to go
high, indicating that the C¥512 is ready for the next command
byte. Data may then be placed on the bus, and data available is
indicated by a high-to-low transition of I/0 Request. Data
should remain stable until the C¥512 indicates data accepted by a
high-to-low transition of the Busy/Ready line., During this busy
time, the CY512 is processing the character just received, The
master processor should then raise I/0 Request and wait until the
CY¥512 is ready for the next data byte. Data transfers from the
CY¥512 to the master processor are handled in a similar way, with

12

the master requesting the next byte using I/0 Request, and the
CY512 indicating data available using Busy/Ready. The simplicity
of the data transfer handshake, combined with the ASCII command
structure of the C¥512, allows the commanding device to be any of
a number of things, including a microprocessor or other computer,
a keyboard for manual command entry, or a ROM for fixed, stand-
alone applications., The keyboard is especially useful during
prototype development or system characterization,

G
if0 SEL DATABUS & OM DATA BUS
I/O REQ T T T T R T e
IfoREQ [.- P
BUSY/RDY : v /’ \)
: . .

Figure 2,4 Data interface and handshake waveform

Since most stepper motors are parts of functional systems,
requiring that various parts of the system stay synchronized with
each other, the C¥512 has been designed with a number of
secondary input and cutput control lines. These signals may be
used to modify and control the stepping behavior of the device,
or indicate certain conditions within the controller. Two inputs
control the stepping behavior directly. While Step Inhibit is
high, the controller will not step. Stepping is resumed when the
signal goes low again. This signal may be used to halt a motion
under emergency conditions, or to slow the step rate if the motor
cannot keep up. Conversely, the Terminate/Abort signal is used
to speed up the rate [Terminate), or to cause a deceleration to
the starting rate (Abort), at which point the motion may be
stopped. Two other inputs modify the way a program is executed.
The Wait line is used to suspend a program until the signal level
on that line is in a certain state. Commands allow the program
to wait for either a high level or a low level, making it
possible to synchronize on either transition of the line. The
Dowhile input is used with the conditional loop command. While
the line is low, the CY512 will loop back to the beginning of the
program, repeating the program section over and over, When the
line goes high, the controller will continue with the rest of the
program.

STEP INHIBIT SLEW
TERMIMATE {ABORT MOTIOMN COMPLETE
WAIT RUM
DOWHILE FROGRAMMABLE QUTPUT

Figure 2.5 Secondary control inputs and outputs

13

The CY512 also provides a number of output signals which may be
used by other parts of the system. While stepping, the Slew line
indicates that the C¥512 has reached the maximum programmed step
rate, and is not accelerating or decelerating. When the CY¥512
has stepped for the number of steps specified, the Motion
Completa =signal indicates the end of the current motion, Run is
used to indicate that a program is executing., In addition, the
C¥512 provides an uncommitted output, Programmable Qutput, which
the user may apply as needed. The lewvel on this output is
controlled by two commands, one for a high output, and the cther
for a low output.

CY512 PINOUT DIAGRAM

The CY¥512 pinout diagram is shown below, followed by the table of
pin definitions.

1/0 REQUEST A0 f=— +5 VOLTS

i
il 2 39 fe—T/0 SELECT
o 3 [:Y5‘| 2 38 =— WAIT (PROGRAM)
RESET 4 37 |—= NOTION COMPLETE
UNUSED 5 36 Je— ASCII/BINARY
TERMINATE /ABORT 6 35 |—= PULSE
EHD _ 1 34 F— PROGRAMMABLE OUTPUT
TNSTROBE 8 33 |—== DIRECTION
UNUSED g 32 RUN (INT REQ 2)
OUTSTROBE 10 31 PROG
CLOCK /15 1 30 STEP INHIBIT
0B, 12 29 STEW
DB, 13 28 fee— DOWHILE
08, 4 INTELLIGENT 27 [—® BUSY/RoY
bE, 'S POSITIONING 28 J=— "3 vLs
gg* :g STEPPER g: il
= § _MOTOR ::z: STEPFES
DB, i3 CONTROLLER 5| 4 i
GND 20 21 |—= ¢, | SIGHALS

Figure 2.7 C¥512 Pin definition

14

L S R SN

i TABLE I CY512 PIN DESCRIPTION
#3 I PR EET S P IR ST T R TR EET R I T R R T R R i e e e N R T R R N I T T R T T
i/| DESIGNATION PIN$ FUNCTION
§
| vee 40 +5 volt power supply.
¢
vDD 26 +5 volts,
g Vgg 7.20 circuit GND potential.
é DBy-DB4 12-19 bidirectional parallel data bus.
$1-%4 {output) 21-24 stepper drive signals.
Direction 33 indicates current stepping direction
{output) and is affected by +, -, and "P"
commands (Hi = CW, low = CCW).
| Pulse 35 low when step begins, high when step
| (output) ends or is externally terminated by
Terminate/Abort line.
{ Motion Complete 37 signal to interrupt heost at end of
é (Int Reg 1) (output) stepping.

Wait 38 program Waits for this pin to go LOW

{input) when "Until™ command is executed, and
waits for a High signal when "Wait"
command is executed.

Terminate/Abort [Low during step Terminates {[completes)

{input) step prematurely, Rising edge of Pulse
may be used to bring line high again
{this combination may be used with Step
Inhibit to maximize step rate). If held
low, the controller Aborts high speed
stepping, ramps down and continues
stepping to target position at slowest
step rate.

e

Reset 4 initializes controller to power-up
{input) state.

? I1/0 Request 1 strobe to initiate command input when
{input) writing to C¥512. Initiate data output

when reading from CY512. Interpretation
of pin 1 is a function of I/0C Select
{pin 39).

I/0 Select ag indicates direction of data on the data
{input}) bus. Low = input to C¥512. Hi = output

from C¥512, which can only be generated
if CY¥Y512 has received "V™ command.

T T e R T e

P R T T R R N S N R R e R R R R R R S T e R T R R R R T
i -

| TABLE I
T e
| DESIGNATION

Unused

Busy/Ready 27

i focutput)
.
H
Prog 31

i {foutput)

% Run (Int Reg 2) 32

(Pregram Complete)
i (cutput)

Slew 29
foutput)

v

Dowhile 28
{input)

e

Step Inhibit (input) 30

Programmable Output 34

TwTTE————
= T

foutput)
} ASCII/Binary 36
| (input)
g Xtal,-Xtal, 2,3
% (inpiit)
E Clk/15 11
§ {cutput)
i
|
: Instrobe 8
i {output)
i
|
1 Outstrobe 10
; {ocutput)

e

FEREEEREAREER

must remain disconnected.

(not TTL).

CY¥512 PIN DESCRIPTION {continued)
- et

FEEEiE FiEER LA A S P LA R

FUNCTION

handshake line for command data input.
Host must wait until Ready state is
indicated by a high level before
transferring command or data to CY512.
If Run {pin 32} is low, Ready is
invalid, since C¥512 can not be written
to while program is executing.

indicates program entry mode. Commands
are entered and saved, but not

executed, while pin 31 is low.

indicates program execution mode.
Commands cannot be entered while
program is executing (pin 32 = low}.

goes low when maximum specified
stepping rate has been achieved, Will
return high when deceleration begins.

is tested when "T" command is
encountered in program, If low, program
will continue looping; if high, program
will fetch next instruction.

inhibits stepping while held high.

user programmable output pin.

selects ASCII-decimal or binary mode of
operation.

inputs for crystal or external clock
See Clock Circuits section.

This cutput represents the crystal
frequency divided by fifteen. The pulse
width is at least 300 nanoseconds.

occurs during data input. The data on
the bus must be valid until the
trailing edge of Instrobe occurs.

used with "V" command. Trailing edge
indicates valid data output by C¥512 on
data bus.

e,
ik e

EEELRERRI TSR R b EITEER I T R

3 OVERVIEW OF COMMAND LANGUAGE 3

“BIN-ASGII” ™ FEATURE

The CY¥512 user-orientation has been accomplished without the
expense of complicating the host programming job. For example,
the ASCII-decimal integers typed by the user at the keyboard may
not be readily available in the host programming language. For
this reason the CY¥512 can be placed in a binary mode in which
binary number parameters are used instead of ASCII-decimal. This
allows any computer with binary integer arithmetic tc send
commands and binary information to the controller. The C¥512 is
placed in either the binary or the ASCII-decimal mode via a mode-
select input pin setting.

The use of ASCII instruction and ASCII-decimal integer parameters
allows the user to type commands in familiar high-level language
formats, as shown below:

N 738) ;set Number of steps = 738
G) ;G0 {begin stepping)}

where "N" is the ASCIT command specifying NUMBER of steps to
take. The ASCII space character is shown as a space, and the
decimal number "738" is then entered, followed by the carriage
return key, "j"= ODH which terminates the commands. The GO
command is entered as "G)". The controller then steps the motor
for 738 steps. Other parameters, such as rate, may be specified
in similar fashion.

Although the use of ASCII-decimal numbers is ideal for the user
employing BASIC or other languages that can output ASCII-decimal
numbers, it is, of course, desirable that the controller accept
binary number parameters from binary c¢omputations. For this
reason, the C¥512 Stepper Controller may be placed in a BINARY
mode via a strap, or mode-select, pin. In this mode, all numbers
are interpreted as binary data (as are all commands). See
the section on binary data mode for details.

17

HIGH-LEVEL LANGUAGE DESIGN FACILITATES PROGRAMMING

The primary advantage of all hi-level languages is their problem-
oriented nature, as opposed to the device-oriented nature of
machine languages. A secondary characteristic is their ASCII
representation, and a third characteristic of most hi-level
languages is their use of the ASCII-decimal numbering system as
natural numbers. 1In all of these aspects, the CY¥512 qualifies as
a single chip Hi-Level Language Device. The combination of hi-
level language and ASCII-keyboard programmability is designed to
maximize user ease and convenience.

Every instruction entered in the ASCII decimal mode of operation
consists of one of the following forms:

1. Alphabetic ASBCII character followed by the "}" (RETURN) key.

2. Alphabetic ASCII character followed by space, then ASCIT
decimal number parameter, then "}" = (DH,

Examples of type one are as follows:

R I R R R S R e A e R T e N R R T
| namME COMMAND INTERPRETATION g
% Athome aj Declare absolute zero location :
% Bitset B} Set programmable cutput line E
é Clearbit C) Clear programmable output Line g
i Doitnow D} Do program (begin running program) %
Enter E} Enter program mode ;
ti. i e e e e T S S G TR

Examples of type two are as follows:

PR R R T ST R R e e R R e R R R B TR R

NAME ASCII COMMAND INTERPRETATION

it

Number N nj Declare number of steps to be taken
{relative)

~ax

T — T
=

] Rate Ruxj Declare maximum rate parameter E

; Slope S §) Declare ramp rate §

% Factor F f) Declare rate modification factor
Position P p) Declare target position {(absolute)

B P R e L R T L O T e TR R R

18

A A

RIIEEEIE I R R R R R TR

RS

e L

i

oo

T P P

R T T e

B

o

=

o

wo=Es < g o W o o =)

+

Athome
Bitset
Clearbit
Doitnow
Enter
Factor
Go

Balfstep

Initialize

Jump
Loop
Number
Offset
Position

Quit*

Rate
S5lope
Loop Til
Ontil
Verify
Wait
eXpend
CW

CCW

Command

NI

CYSlE CDHHAHD SHHHHRY

IRTEBPRETATIGH

Set current location as absolute zero
Set programmable output line high
Reset programmable output line low
Begin program execution

Enter program code

Set factor parameter for step rate
Begin relative stepping operation

Set halfstep mode of operation

Turn off step drive lines, reset controller
Go to specified program buffer location
Repeat program segment Eﬁr specified count
Set number of steps to be taken (relative)
Set next stepper drive signal value

Set and step to target position (absolute)

enter command mode.
*Never followed by ™"

Stop saving program,
also quit stepping.

Set step rate parameter

Set ramp rate for slew mode operation

Loop "Til" dowhile line goes high

Stop execution until wait line is low

Verify internal buffer contents

Stop executing until wait line is high
Time delay for specified milliseconds

Set clockwise direction

Set counterclockwise direction

Stop program execution, enter command mode

DESCRIPTION OF COMMANDS

The command format shown in the following descriptions indicates
the way commands are stored in the program buffer, as well as
showing the binary values of the command letters. Hote that in
Binary mode the user must insert a data count between the command
letters and parameters, if any., See section 10 on Binary Data
Mode. Also note that 16 bit parameters (number and position) are
entered least significant byte first in the Binary mode. 1In the
ASCIT mode, command letters are separated from parameters by a
single space, and the parameters are entered as ASCII decimal
numbers, ASCII mode commands are terminated by a carriage
return, as indicated in the leftmost c¢olumn of the command
description.

A} ATHOME 0100 o0OL 1 byte

The ATHOME instruction defines the "Home" position. This
position is set to absolute zero, and is the reference for
all POSITION commands., The ATHOME command may be used at
any time to define or redefine position zero.

B} BITSET 0100 0010 1 byte

This instruction causes the programmable output pin (#34) to
go HIGH. This is a general-purpose output that may be used
in any fashion.

C} CLEARBIT 0100 0011 1 byte

This instruction causes the programmable output pin (#34) to
go LOW. The user can signal locations in a program sequence
to the external world via B and C instructions.

D; DOITHNOW 0100 0100 1 byte

This instruction causes the CYS512 to begin executing the
stored program. If no program has been entered, the
controller will stay in the Run mode unless a Stop Operation
is executed. If the program exists, the controller will
begin execution of the first instruction in the program
buffer. If the run (DOITNOW) command is encountered during
program execution, it restarts the program (however, the
initial parameters and modes may have been redefined later
in the program) and may be used for looping or eyclic
repetition of the program.

E} ENTER 0100 0l0l 1 byte

This instruction causes the C¥512 to begin the program entry
mode of operation. All commands following the ENTER command
are saved in the program buffer in sequence until "Q" is
entered, The PROG line (# 31) goes low to indicate this
mode .

20

F f} FACTOR 0100 0110 2 bytes

G)

H)

1)

I ay

E-? aﬂ

The factor, £, is a number from 1 to 255 and is used to

further define the step rate. See the Rate Equation in
Section 8 for details,

GO 0100 0111 1 byte

The GO command causes the stepper motor to step as specified
by the rate, direction, etgc., commands entered prior to the
GO command, Stepping will be in the relative mode, with the
number of steps defined by the N command.

HALFSTEP 0100 1000 1 byte

The HALFSTEP command causes the C¥512 to enter the halfstep
mode and remain in that mode until the device is reset or
reinitialized.

INITIALIZE 0100 1001 1 byte

The INITTALIZE command causes the CY¥512 to enter the command
mode. HNone of the distance or rate parameters are altered.
aAny commands following "I"™ will be executed with the
parameters specified prior to "I". The INITIALIZE command,
when encountered during program execution, halts the program
execution and returns the system to the command mode. This
command de-energizes the stepper motor coils, erases the
program, if any, sets the direction to CW, and sets the full
step mode (turns off half step).

JUOMP 0100 1010 2 bytes
a7y ag

The JUMP command will branch program execution to the
program buffer location specified by the argument, which
represents the byte number in the program buffer, starting
with zero. Program execution continues from the specified
byte number after the jump is executed. When the JUMP
command is issued from the Command mode, it enables the Run
{Program execution) mode, and begins executing from the
specified byte number. It is the user's responsibility to
insure that the number specified with the JUMP command is
the correct value for the desired starting point. The first
byte after the "E" command is location zero, The byte count
specified in this section determines the number of bytes
used by each instruction. Note that "J 0)" is equivalent to
'D}'I'I’

21

L c,a)} LOOP (0100 1100) 3 bytes

N n)

A a COUNT
Ebg ng% LOCATION

The LOOP command uses the first argument as a repetition
count, and the second argument as a jump location. Each
time the LOOP command is executed, the count is decremented
by one. If the count 1is nonzeroc after the decrement,
program execution will jump to the specified address, which
is the second argument of the command. The jump address
specifies the location to which execution will loop, and the
count represents the number of times the loop is to be
repeated. When the count reaches zero, program execution
continues with the instruction immediately following the
LOOP command. In ASCII mode, the two arguments may be
separated by either a comma, or a single space. LOOP
commands may not be nested one inside the other.

NUMBER (oloo 1110) 3 bytes
(ay ag) LSbyte
bg

a
(b?) MSbyte

The NUMBER command is used to specify the number of steps to
be taken in the "Relative" mode of operation. The argument
may be any number from 1 to 64K-1 (65,535). Note that this
parameter is stored as 2 bytes in the program buffer.

OFFSET 0100 1111 2 bytes
a9 ag

The OFFSET command specifies the next step pattern to appear
on the STEPPER MOTOR DRIVE SIGNALS, pins 21-24, This
command may be used to synchronize these outputs with the
motor when the desired pattern is known from the motor's
position. See "Half Step or Full Step" discussion at the
end of Section 7.

POSITION 0101 0000 3 bytes
The POSITION command declares the "Absolute"™ mode of
operation. The argument is treated as the target position
relative to position zero. The ATHOME command is used to
define position zero. Stepping to the target position
begins when the POSITION command is executed. No "G"
command is required. Direction to the target position is
also determined and set automatically.

22

T

QUIT (Programming) 0101 0001 1 byte

NOTE: The QUIT command is self-terminating, and should NOT
be followed by the Linend ")" or data count, Such
termination may result in incorrect operation.

The QUIT command causes the CY¥512 to exit the "Programming”
mode of operation, wherein instructions are stored in the
program buffer in the order received; and causes the C¥512
to return to the "Command" mode of operation, in which
instructions are executed as they are received. It may also
be used as an emergency stop operation during a step
command.

RATE 0101 0010 2 bytes

= ag

The RATE instruction sets the rate parameter that determines
the step rate. The rate parameter, r, varies from 1 to 255
corresponding to step rates from 50 to 4350 steps/sec
{(assuming a rate factor of 1 and a 6 MHz crystal). The rate
is non-linear and can be computed from the rate equation or
from Table VII. For crystals other than 6 MHz the step rate
should be multiplied by fcnyHHZ: where £,, is the crystal

frequency. Y
SLOPE 0101 0011 2 bytes
a7 ap

The S5LOPE or slew mode of operaticn is used when high step
rates are reguired and the initial load on the motor
prevents instantaneous stepping at such rates. In such
cases, the load is accelerated from rest to the maximum rate
and then decelerated to a stop. The user specifies the
distance of total travel (via "N" instruction), the maximum
rate {via "R") and the ramp rate or change in factor
parameter from step to step. The C¥512, starting from rest,
decreases the factor parameter by "s" with each step until
the maximum (slew) rate is reached. The device computes the
*re-entry" point at which it begins decelerating (with
acceleration = =s) until it reaches the final position.

loop TIL 0101 0100 1 bvte

The "T" command provides a "Do...While..." capability to the
C¥512., This command tests pin 28 and, if low, it executes

the DOITNOW command, i.e., i1t runs the program from the
beginning {although using the latest rate, position, ete.,
parameter). If pin 28 is high, the instruction following
the T command is fetched and executed.

23

u)

W)

H

wait-UNTIL 0101 0101 1 byte

The wait-ONTIL instruction is used to synchronize the
program execution to an external event. When the "U"
instruction is executed, the WAIT pin (pin #38) is tested.
When the WAIT pin goes low, the next instruction is fetched
from the program buffer and execution proceeds.

VERIFY (0101 0110) 2 bytes

a7 ag

The VERIFY command allows interrogation of the internal
C¥512 buffers, including the rate, slope, number of steps,
and current position registers. This command is also used
to examine the current contents of the CY¥512 program buffer.
The parameter "v" specifies which internal register group is
to be read. VERIFY should only be executed from the command
mode. Reading data during run mode may not work properly.
See "Verify Mode" in Section 6 for details.

WAIT 0101 0111 1 byte

The WAIT instruction is the opposite of the U command. WAIT
tests the WAIT pin (pin #38} for a high level. The program
will stop until the pin is high, then it will continue with
the next command. Note that the U command may be used tc
detect the falling edge of the WAIT line signal, and the W
command may be used to detect the rising edge. Thus, it is
possible to synchronize program execution to either one or
both of the transitions.

EXPEND (0101 1000) 3 bytes
as ap LSbYtE
7 0 MSbyte

The EXPEND command will time delay for the number of
milliseconds specified by its argument. The delay is
calibrated in milliseconds, using an 11 MHz crystal. Other
frequencies will require a linear scaling for the actual
delay time, Since this is a 3 byte command (lé bit
argument) the delay time can range between 1 msec and about
65.5 sec at 11 MHz. This command is useful in programming a
delay time between stepping motions.

CLOCEWISE 0010 1011 1 byte

Direction is set to clockwise by this command. Relative
mode steps are taken in the direction last specified, sc
they will be clockwise until the direction is changed by the
"-" or "P" commands., The current direction is always
indicated on the DIRECTION line (pin # 33).

24

)

CCW ; 0010 1101 1 byte

Direction is set to counter-clockwise by this command.
Comments under CLOCEWISE alsoc apply to the "-" command.

COMMAND 0011 000D 1 byte

The CY¥512 is placed in the command mode and the next command
is executed as it is received. Programs should be

terminated by a "@" command, returning the C¥512 to command
mode at the end of program execution.

25

4 DETAILED EXAMPLES OF COMMANDS 4

RESET COMMAND (INITIALIZE)

The "I" or Initialize command resets all pointers to the power-up
state and restores the flags to this state, Specifically, the
program is erased and the command mode entered. The direction is

clockwise (CW)., Halfstep mode is turned off. Note that this
command de-energizes the stepper coils (phase ocutputs all go
high). If this effect is undesirable, an external latch should

be used to latch the four stepper control outputs using the pulse
line (pin 35) to clock the latch. See Figure 4.1.

EXTERMAL DE-EMERSGIZE COMMAND

Figure 4.1 An external latch on the stepper control outputs
prevents de-energizing of stepper drive coils when
C¥512 1is reset via hardware or software and alsc
allows an external control line to de-energize the
coils independently of the C¥512,

PROGRAM EXECUTION MODE: “RUN” MODE OPERATION

Once a program is entered into the program buffer, it may he
executed with a run or DOITNOW ("D") command. This code has been
assigned the ASCII value "D" = 44H. It is the last command to be
entered before program execution. It is a normal command in the
sense that it Is terminated with a carriage return, "}" = ODH.

HOME POSITION

The "Athome" command, A, is used to declare the "Home" position,
assigned absolute value zero. BAll positicns specified with the
POSITION command, P, are referenced to this zero position. On
power-up, the absolute position is random. Therefore, the home
positicon should be found, and the A command used, before the
absolute position commands are utilized.

PROGRAM LOOPING, ITERATION

One consequence of stored program execution is the use of program
loops or program repetition. If the run (DOITNOW) command of the
C¥512 is included as a program instruction, the program executes
again beginning with the first instruction (but using the latest

26

value of parameters set before the DOITNOW instruction was
rather complex sequences of

encountered).
metions
interruption.

While™

may be

In this fashion,

repeated without host
Conditional looping may be accomplished with a "Do

intervention or

type instruction that continues lcooping until a condition

is fulfilled. This may be combined with the JUMP command, for
unconditional branching to wvariocus routines in the program
buffer, Finally, a subsection of a program may be repeated a
specific number of times by use of the LOOP instruction.

Unconditional Program Looping

If the DOITNOW command, "D", is encountered in the program entry
mode, it is stored in the program buffer with the rest of the
program., When this instruction 1is encountered during the
program execution, its effect is to begin program execution
again, and therefore may be used to achieve cyclical leooping if
desired. However, program =xecution may be aborted via either
the RESET line or the Stop Operation (Q command during stepping).
Conditional Program Looping - (Do...While.,..)}
The ability to repeatedly execute a program until an external
event occurs provides a unique "Do...While,.." capability for the

C¥512. The "T" command (loop TIL) is used as shown in the
following example.
e
' N n) set number of steps = n
3 PROGRAM
ENTRY
i R ERG G E) enter program mode
- +) set CW direction
| mooe
R ry) set rate =]
y o= .
F$m®]’m = G) begin stepping
EXECUTE
el -} set CCW direction
ExIT RUM R r set new rate = r
% G} go (same "n"})
(ePECIFY] T .
g T) loop TIL pin 28 goes HI
i PRk | — B) set control output line
BT o aa j 8; return to command mode
RUN [
Q gquit progam mode
Figure 4.2 Conditional Loop Dy begin executing program

27

Conditional Loop Embedded in an Unconditional Loop

"Do (the preceding program} While (Pin 28 is low)", then proceed

to execute the remaining pregram instructions.

Note that the

program can (but need not) end with a DOITNOW instruction to
provide a conditional loop inside of an unconditional loop:

R ¢

1} set rate parameter
Ej enter program mode
N n,, set first distance
+} set CW directicn
Gj . take ny; gteps
-} set CCW direction
N n,y distance parameter
Gj take njy steps
T) repeat TIL pin #28 = HI
Bj set output HI (pin 34)
R r.3 set new rate
Dy repeat program
Q exit program mode
D} begin executing program

The Wait line allows a program

to be suspended until an
external event occurs. As long
as the Wait line is in one

state, the program continually
tests the line without executing
any other instructions. When
the line changes to the state
being waited for, the program
continues with the commands
following the wait instruction,
Figure 4.4 illustrates the wait
Until command, for which the
wait line must be low to
continue.

Figure

28

m PARAMETER
i THTRY

PROGRAM
ENTRY

EXECUTE
PNMER, LOOF
IHSTRLCTIONS

COMTMTIOMAL LOOF

EXECUTE
OUTER LOGP
IMETRULTIONS

LHCONMEITITRAL
LOAF

s
E
o TIME
DOWHILE
g
i PROGRAMMABLE
_I auTeuT
Figure 4.3

Conditional Loop Imbedded
in an Uncenditional Loop.

PROGRAM

EXECUTION

" (WAIT UNTIL)

i

CONTINUE
PREGEAM EXECUTION

4,4 Wait UNTIL command use,

The JUMP Command

Unconditional branching to any location in the program buffer may
be accomplished by the Jump command. The single argument of the
command specifies the program buffer location at which program
execution will continue, This number is simply the byte number
within the program buffer, with the first location designated as
byte zero., Since the program buffer is 48 bytes long, arguments
for the Jump command range in value from 0 to 47. The actual
value used should correspend to the beginning of the instructieon
which is to be executed next. The byte numbers may be determined
by adding the number of bytes used for each of the previous
commands in the buffer. Byte counts are specified in Description
of Commands in Section 3,

The following example contains a Jump command used to repeat a
section of the program. The program steps to the home position
at high speed, then repeats mctions of 75 steps at a lower speed,
waiting for a synchronizing signal before taking each motion.
The Jump command may alsc be used in the Command mode, to start
program execution at a location other than the first command of
a program. This example assumes the home position has been
previousy defined, using the "Athome" command.

E} enter program mode

EXECUTE
BEGINNING
OF PROGRAM

4 |l EXECUTE
| i LOGP

0 auit pr

ogram mode

S 20} define acceleration slope

F 1) define stepping factor

D} begin running program
Figure 4.5 JUMP Command Use

25

WELDING MAGHINE EXAMPLE

Suppose we want a row of six equally spaced welds on a piece of
metal. The welder should be turned on by the CY¥512 programmable
output line when in position, and be turned off when finished.
After completing six such welds, it will return as gquickly as
possible to its starting position, and wait for the next
workpiece to come into position. It will then weld the next six
spots, and continue in this manner until there are no more pieces
to weld, at which time the program will stop and the C¥512 will
return to the Command mode.

CYSI12

R 180)] Jedan
S 35) define stepping parameters ey
F 9% 4€ M
|4
A) declare current position as home 00 } 20
E) enter and save the follawlng progran 23 T
i _ take 20 steps between welds 47 G
| +) CW direction 43 c
W) wait until workpiece is ready 58 X
il G) go 20 steps Ea
| C) activate welder } 1000
| X 1000} delay 1000 msec (1 sec) to weld 03
| B) turn off welder 42 B
| L 6,5) repeat six times from G command 4C L
| P 0) return to home position after 6 welds = ;
T repeat program until no more pieces
1 9} stop program, return to command mode i 2
% 50
Q exit program mode 00 } 5
00
D} begin executing program 54 T
ala] g

Figure 4.6 Loop Command Use.

Figure 4.7 Welding Example.

30

In the welding example, relative mode stepping is used to move
the welder from one spot to the next, while absolute mode
stepping is used to bring the welder back to the home position,
ready to start the next workpiece. The Wait line is used to
indicate that a workpiece is in position, and the Dowhile line
indicates when there are no more pieces to weld. A real
application may be more complex than what is illustrated, but the
program indicates the level of problems which the CY¥512 can solve
without help from a host computer. The program uses 19 of the 48
bytes available in the CY512 program buffer.

OPERATIONAL MODE SUMMARY

MODE DESCRIPTION| MODE MODE 1

DATA TYPE ASCI DECIMAL | BINARY {FIN 38 = HI/LO) (ASCIEIN)

FPOSITION TYPE RELATIVE™ ABSOLUTE"" "N COMMAND SELECTS RELATIVE, 'P' COMMAND

SELECTS ABSOLUTE

STEF MODE FULL-STEP™™" |HALF-STEF 'H' COMMAND SELECTS HALFETEP

GATED OPERATION TRIGGERED NON-TRIGGERED| FIN 30 LO IF NO TRIGGERING, STEP ON HI-TO-LO
TRANSITION

EXECUTION COMMAND PROGRAM ‘D" COMMAND SELECTS DO PROGRAM, ‘8" SELECTS
COMMAND MODE

2R

“MODE @ 1S DEFAULT MODE IF DEFAULT EXISTS
“*ABSOLUTE MODE SET ViA EACH 'POSITION' COMMAND, ELSE RELATIVE MODE IN EFFECT.
“**HETURN TO DEFAULT MODE ONLY BY RESET (HARDWARE) OR 'INITIALIZE' COMMAND (SOFTWARE),

31

5 BINARY DATA MODE OF OPERATION 5

BINARY DATA MODE

To facilitate microprocessor control using binary arithmetic, the
CY512 can be placed in the BINARY data mode of command execution
by applying a low voltage to pin 36. The possibility of the QUIT
command occurring in the binary data necessitates the use of a
data count sent after each command byte. 1In binary mode, the
QUIT command, "Q" = 51H, may be inadvertantly transmitted, since
some of the binary Position or Rate data may assume this value.
For this reason it is necessary to specify the number of binary
data bytes to be sent to the CY512. In this mode, the data count
and data values are specified in binary form, while the command
letters retain their equivalent ASCII values.

Commands are issued by first sending the command letter, which
has the same value as in ASCII mode. This is followed by a
binary wvalue data count. The data count represents the number of
data bytes to follow the command byte. If the command is a
single letter with no parameter, such as "a", "B", or "T", the
data count will be zero, indicating the end of the command. This
is similar to sending the command letter and a carriage return in
ASCII mode. HNote that the data counts are not ASCII characters,
they are binary walues, Commands with parameters in the range of
1 to 255 will have a data count of binary 1, since these values
can all be specified in a single byte. Rate, Slope, etc. listed
in Table IV are in this category. The data count 1is then
followed by the single byte which is the binary value desired for
that parameter. Commands such as Loop, Number, etc., listed in
the table, will have a data count of binary 2, since their
parameters cannot be specified in a single byte. The data count
is then followed by the two bytes which represent the 16-bit
value for the parameter, or the two parameters used by the Loop
command. Note that 16-bit values are sent least significant byte
first, while the Loop command parameters are sent as count then
address, the same order as specified in the ASCII mode. All
commands except QUIT are of the form:

Ei'ilfthiﬂ'hi*_i]" EEEET MR E R PEEEY ' INEIER BEET ETEVEEREI A R R N N TR Y 'H'?ﬂ'ﬂ'!'i

THBLE I? ALLDHED BIHRRI CDHH&HDS EHD DLTA CDDHT FOR EACH |

EAEEEEL 'i*'i'"i"';i!uii'iﬁ 1

DATA BITE 1

G,H,I,T,U
Wr+:"':g

F,J,0,R | Factor ,Rate,etc.
s,V

L,N,P,X Number of Steps,Target Position,etc.
Least significant byte first

R R Y R AT

Note that the QUIT command is not followed by a data count in the
Binary mode, just as it is not followed by a carriage return in
the ASCII mode. Also, it is possible to load an entire program
with a single byte count wvalue. To do this, issue the ENTER
command with a data count value of zero, followed by the first
command character of the program. Instead of following this
character by the normal data count, use a count equal to the
remaining total characters of the program, up to, and including
the "#" command. Do not include the QUIT command in the count.
The Q" command should then be issued separately, ending the
program entry mode and reverting to command mode. When this
method of program ‘loading is used, the "@§"command must have a
binary value of zero, not the ASCII character "@". The program
may also be loaded as separate commands, with a normal data count
for each command. The following example illustrates both options
for loading a program in Binary mode:

Binary with Binary with C¥s512
ASCII . Separate Single Buffer
Command Data Counts Data Count Contents
E} e ey e 45
BD s isesnna (1]4]
szi#iiiii'iIISEPIFFOOOOOOFSE
Rlsﬂ} ﬂllliiiiiiiiiﬂc
b 1 . 0B . .scancanas 96
BB o wmrmmmn I i u p HE RR 4E
02
L D R R R R 2C
nliiiiliiiiiiullt-iiiiiiiiﬂl
+) - T e e IR T - PRI S S b 2B
0o
Gi 4TlilillIIlli!Tiiiiilliliqu
0o
4E IIIIII ill!l4E--|iii'-"-4E
02
H?Eﬂ} BB e sees s BR . vancaied s ik
B2 cwnvinn e 0 T e | £
o ZD'!-!#"...!IZD.ittiiiiiiizn
) 00
4?‘---.‘--.-!4? IIIII .‘i’l"l4?
G} 00
30““‘!"1l!nuPi-iiiiiiiinu
0) 00
u 51'.!!!.!!'..51

The program buffer in the CY512 will contain the same 13 bytes
no matter which byte sequence is used. In ASCII mode, it takes
31 characters to define the program, including the "E" and "Q"
commands. In Binary mode, with a separate data count for each
command, the program may be defined in 24 bytes. By using a
single data count for the program, this number may be further
reduced to 17 bytes., Note that the Binary mode values and the
program buffer contents are shown as hex numbers.

33

INTERNAL PROGRAM STORAGE

The C¥512 program buffer can contain 48 bytes of program commands
and data. The Description of Commands contains the length of
each command and is summarized in Table V. Note that program
parameters set in the command mode do not require any space in
the program buffer. If the internal storage is exceeded, the
effects on operation will be unpredictable. For cptimal
operation, the C¥512 is treated as a co-processor, with
"subroutines™ loaded and executed using Interrupt Req #2 (pin 32)
to inform the host when a given routine has finished executing.

—

éffgg 35T

375
375
375
380
400

BITSET
CLEARBIT
DOITHOW
ENTER

e
Pt b et et

rate modifier Z240+c+v
660+v
375
375
byte address 0-47 100+c

FACTOR

GO
HALFSTEFP
INITIALIZE
JUMP

A AN

i
R S e

e

LOOP
NUMBER
OFFSET
POSITION
QuIiT

R P i e

i
=

count and address 1-255, 0-47 150+4c

travel distance 1-65,535 180+¢

drive signal output 0-7 B0+c

target location 1-65,535 5504¢c+v
175

L SRR P bR

e ——
e e S

RATE
SLOPE
TIL

rate parameter 1-255 80+c
acceleration 1-255 80+c
380

o

UNTIL
VERIFY

buffer pointer

0-3

380+v
125+c

WAIT
EXPEND

3804w

msec time delay 1-65,535 1l00+c+v
380
380

e e e e N e L

*NOTES:
Command execution times are for command mode. Program mode
times are much shorter.
Maximum I/O Request time is 660 usec for "P" & "G" commands.
The "L" & "T" commands are normally used only in a program.
c = ASCII to Binary parameter conversion time.
v = variable time depending on parameter values.

34

BUFFER
] COMPUTER

USER SOFTWARE FOR
PROGRAM LOADING

wa T ADY.

HOST SOFTWARE CONSISTS OF
BUFFER TO HOLD COMMAMNDS TC BE
LOADED INTC CY512 PROGRAM BUFFER
PLUS HAND SHAKING ALGORITHM

TC COMMUNICATE WITH CY512

Figure 5.1 C¥512/HOST Interface Diagram.

The following illustration shows the internal structure of the
C¥512, including the data paths between the various parts of the
device. Note that all parameters are stored in registers which
are separate from the program and command buffer, so parameters
which do not change may be defined in the Command mode, and
require no space in the program buffer.

BiliiL 11811
i d Bs : ol i g
TRl L1ELE
$iR 11§D P e
: == T % %
HARDEHARE wra | 3 % R
CONTROL - ff 0 o % CURRENT POSITION
i oo
FRCE : s% % % s% :
_ 28
BLS !
3
A l inal B
DIRECTION - Ll
pum:l] MOTOR, IMETRUCTION [
32 | INTERFACE DECOTE TTE
s —1 5
£4 2 I
15
SLCK = EXECUTION & CONTROL
INPUTE ——f——]

. SECOMDARY COWTROLE &
Figure 5.2 C¥512 Internal Structure, & FHCHRoHITATION

35

INTERFAGE EXAMPLE

In the following, it will be assumed that the 8080/8085 transmits
data to the CY¥512 via output port ODCH. The string of ASCII
commands is stored at BUFFER and terminated by a terminal symbol
OFFH. The D-E register pair will be used to access the character
string.

BOR0 BUFFER
Asci FOR AsCil
COMMANDS MoDE

B080 BUFFER
FoR BINARY

H MODE
D081 11A800 LXI D,BUFFER|

GETCHAR:
0084 1A LDAX D
0085 FEFF CPI OFFH o i
0087 CA9300 J2 QUIT PROGRAM
008A 13 INX D
008B 0E07 MVI c,A -
008D CD9400 CALL SNDCHAR huicis
0090 C38400 JMP GETCHAR -

: .

QUIT:
0093 CF RST EXIT

SNDCHAR 1 i
0094 DBBS 1IN 0BS5H
0096 E601 ANI 1 i
0098 CA9400 JZ SNDCHAR
0098 79 MOV a,cC :
009C E67F ANI 7FH e
009E D3DC OUT ODCH s

. %
00AQ DBB5 IN 0BSH
00A2 E601 ANI 1 11 BYTES
00A4 C2A000 JNZ GOTIT
00A7 C9 RET

BUFFER:

H

]

9 COMMANDS

Figure 5.3 8080/8085 Interfaced to Stepper Motor through CY¥512
Stepper Motor Controller.

36

READ-OUT OPERATIONS

VERIFY MODE OPERATION

The Verify mode of operation allows the user to examine the
internal register contents of the C¥512. This is useful in
determining the current state of the C¥512, and in verifying

parameters before or after critical operations, especially if
communications between the CY512 and the host system are enacted

in an electrically noisy environment.

The internal contents are divided into four groups, as specified
by the parameter in the Verify command. Before reading the
contents of the CY512, the user must issue a Verify command to
set the internal pointer to the desired group. The contents are
then read back one byte at a time, using the seguence described
in CY512 Timing and Control Information. As each byte is read
out, the internal pointer is advanced to the next byte value,
allowing the specified group to be read back by repeated single-
byte transfers. HNote that I/0 SELECT, pin # 39, should be high
while the group is being read.

e§¥::31111:1* S R L R TR DA TR R0 E I P S R R S S S A ARy

EFEETETERY !.I!ﬂ‘ﬁf‘...ﬂ-&lﬂiiliiﬂlh‘!‘ﬂﬂﬂ

GROUP # Of EYTES DESCRIPTIDN

POSITION 2 or 5 current position Binary or ASCII ||
PROGRAM 0 to 48 program buffer contents i
STATUS 6 pointers and internal flags
N, S, R, F parameter values _
: SIFERIN TR BRI R i e e e T

v 0)

As indicated in Table VI, issuing the Verify command with a
parameter value of P will set the internal pointer to the
current position. The position can then be read back as either
a two-byte guantity in Binary mode, or a five-byte guantity in
ASCII mode. The mode in which the Verify command is issued will
determine the format of the position output. The binary
guantity will be presented most significant byte first, and the
ASCII guantity will be presented most significant digit first.
Internally the position is always maintained in binary, so in
ASCII mode, it is converted to the ASCII-decimal equivalent
before being output by the C¥512. The ASCII position is always
a five digit integer gquantity, with leading zeroes as required.
Note that position is the only guantity converted to ASCII
decimal when in ASCII mode. All other Verify outputs are
presented in binary, independent of the current command mode.
If the current position value is 750, the five ASCII characters
would be "00750" in left to right order. The binary mode equi-
valent would be 02EE, sent as two bytes, first the 02, then EE.

37

v 1

With a Verify parameter of 1, the C¥512 will output the
contents of the program buffer. The maximum program size is 48
bytes, representing the longest program which may be read back.
The actual number of bytes which have any meaning will depend
on the length of the current program. Output starts with
location 0 of the buffer, the front of the program. Commands
are stored in the program buffer with the format indicated in
Description of Commands except that the @ command has a binary
value of zero. Note that two-byte parameters are stored least
significant byte first in the program buffer. Several examples
in this manual illustrate the program buffer contents. All
would be read back in the order shown, from the front of the
program through the end. If additional bytes are read back,
they may not have any meaning, since most programs will not use
the entire buffer.

v 2}

The Status group, accessed with a verify parameter of 2,
consists mostly of pointers and flags used by the internal
operations of the C¥512. This group is provided mainly for
device testing, and is not expected to be of general interest,
except for two flags, which both occur in the sixth byte of
the group. If the fifth bit (DB,) of the sixth byte is high,
the current direction is set CCW, Direction is CW if the bit
is low. WNote that the sense of this bit is opposite that of
the DIRECTION line, pin # 33. If the eighth bit.{DB?} of the
same byte is high, it indicates that half step mode is enabled.
4 low value indicates full step mode.

v 3

The final group accessed by the Verify command is the parameter
group, pointed to when the Verify argument is 3. This is a
five-byte group, consisting of the parameters which may be
specified by the user, The first parameter output is the
number of steps, as specified by the N command. This is a two-
byte value, with the most significant byte output first, Next
is the slope parameter, as specified by the S command. This is
followed by the current rate, set by the R command. Finally,
the factor, as specified by the F command, is output. Slope,
rate, and factor are all single-byte values. With N 513),
S 25), R 180}, and F 3), the bytes read back would be 02, 01,
1%, B4, and 03 (HEX), for N, S, R, and P respectively.

The timing sequence of Figure 7.1, in CY¥512 Timing and Control
Information, was generated by sending the command "V 1", and
then reading the first four bytes of the program buffer. The
other groups may be accessed in an identical manner, by
substituting the desired group number in place of the 1 in the V
command. An example subroutine for reading back a desired number
of bytes is shown in Figure 6.1. The routine is written in 8080

38

Assembly Language.

been sent.

It assumes that the V command has already

A routine such as the SENDPARALLEL subroutine,
in Figure 11.6 could be used to send the desired V command.

shown
The

RCVBYTE routine is entered with the B register set to the number

of bytes to read,
buffer which will hold the data.

and the DE register pair pointing to a RAM

003B
0o03p
003F

0042
0044

0046
op48

004A
004C
004E

0051
0053
0054

0055
0057

0059
J05B
DO5D

0060
ooel

D064
0066
0068

DBED
E6Z20

CA3BOO

3E03
D3EF

3E00
D3EF

DBED
E620
C24a00

DBEC
12
13

3EOL
D3EF

DBED
E620
CA5900

05
C24600

3E02
D3EF
c9

;
RCVBYTE:

:READ CY512 IN VERIFY MODE, V CMD ALREADY SENT
;B = 4 OF BYTES TO READ, DE = BUFFER POINTER

IN STATUS
ANI READY

3z RCVBYTE
MVT A, TOSELOUT
ouT A4CNTRL
;

NEXTCHAR:

MVI A, TOREQ
ouT A4CNTRL
;

WAITDATA :

IN STATUS
ANI READY
INZ WAITDATA
H

IN DATA
STAX D

INX D

H

MVI A,NOIOREQ
ouT A4CNTRL
WAITCLR:

IN STATUS
ANT READY -
Iz WAITCLR
;

DCR B

INZ NEXTCHAR
MV T A, IOSELIN
oUT A4CNTRL
RET

i

-
I

;LOW IF BUSY
sWAIT FOR READY

$+1/0 SELECT SET HIGH FOR READ BACK

;I/0 REQUEST LOW TO REQUEST A BYTE

;LOW WHEN BUSY
;BUSY MEANS CY512 HAS OUTPUT A BYTE

;READ THE BYTE

;SAVE IN BUFFER
;POINT TO NEXT BUFFER LOCATION

;1/0 REQUEST HIGH TO ACE BYTE RECEIVED

sWAIT FOR READY AGAIN

;CHAR COUNT
;MORE BYTES TC READ IF NOT ZERO

; I/0 SELECT SET LOW FOR NEXT COMMAND

Figure 6.1 Verify mode read subroutine.

39

7 TIMING AND CONTROL INFORMATION 7

CY512 HANDSHAKE TIMING INFORMATION

With the parallel interface to the C¥512, the user must wait for
the CY512 BUSY/RDY line (pin #27) to be high before applying I/0
REQUEST strobe to pin #1. Note that no data set-up time is
regquired, so the data may appear on the data bus at the same time
that the I/0 REQUEST write strobe goes low. This is especially
convenient in the ASCII mode as bit 7 of the ASCII data byte can
be used to generate the write strobe (figure 10.8). The data is
read into the CY512 from the data bus by a 1low going read strobe,
INSTROBE, appearing on pin #8. The data should be valid at the
trailing edge of INSTROBE. INSTROBE may be used to enable the
data onto the data bus from an external dewvice. The data may be
removed at any time following the occurrence of INSTROBE, however
the I/0 REQUEST line should be held low until BUSY/ RDY acknow-
ledges the transfer by going low. The simplest interface ignores
INSTROBE and uses BUSY/RDY only (Figure 2.1). 1I/0 SELECT must be
low while commands are being sent to the C¥512, and the maximum
active time for I/0 REQUEST is 660 usec for P and G commands.

Timing for the Verify mode, in which the internal contents of the
C¥512 may be examined, is similar to that described above. 1In
order to read the internal contents, the I/0 SELECT line must be
high. This will put the C¥512 in an output mode. When the
BUSY/RDY line is high (ready), the user should strobe I/O REQUEST
(pin # 1) low. The C¥512 willi then write the next byte value
cnto the data bus. This is indicated by a low going write
strobe, OUTSTROBE, appearing on pin #10. The data will be
latched and valid on the trailing edge of OUTSTROBE, which may be
used to latch the byte into the user's input port. After
OUTSTROBE, the CY¥512 will go busy, indicating that the data is
available on the bus. Datajwill remain valid until I/0 REQUEST
is again set high by the user. Note that the user may read the
data directly, after the C¥512 goes busy, before raising I/0
REQUEST. When the C¥512 detects I/0 REQUEST high, the data bus
will be put back into a high impédance state, and data will no
longer be valid. This operation will be indicated by a second
OUTSTROBE pulse. The C¥512 will then indicate ready again,
awaiting the next command or another verify read, as indicated by
the I/0 SELECT line. See Figure 7.1 for the waveforms.

Tc enable all CY¥512 features, the user should connect all 8§ lines
of the data bus to his I/0 ports, and generate I/0 REQUEST and
I/0 SELECT as separate lines. I/0 SELECT should be changed only
while the CY512 is ready (BUSY/RDY is high), and may be used to
determine the direction of data on the data bus (low=into C¥512,
high=out from CY¥512). Since the data bus is bidirectional, the
user must turn off (tri-state) the command output port during the
Verify mode, allowing the C¥512 to drive the data bus lines.
This may be done by I/0 SELECT, or the command port could be tri-
state at all times except during the INSTROBE pulse.

40

——————————————

- .-__rr'.-l __________
o
3
T
| .
o o
= EE
Figure 7.1

e B
e o E -——
= s
z 2

TE1-3TATE

1
i

DT LAY CHA R 1 Taj-sE9L TEL-FTWEL TRFSTRTE
i

1
1
H
!
L} 1
b {J
DB _'ﬂ.kmmmi‘mnwumm 'mmme *

i
STABLE

RATA DATA.
STABLE GTABLE

DATA
STAULE

DATA
STABLE

THATA,
STABLE

BATR
STABLE

DATA
STABLE

Parallel Handshake
Timing Segquence.

41

DOITNOW “RUN” TIMING

After entering program
code into the C¥512
program buffer, and
exiting the program entry
mode via the "Q" command,
the host computer should
wait for the PROG line
{pin 31) to go high,
indicating that the C¥512
is no longer in the
program entry mode. After
testing the RDY line to be
sure that it is high, the
host computer can send the
"DOITNOW" command (D}), as
shown in PFigure 7.Z.
Using a 6MHz crystal, the
C¥512 will be busy
approximately 150 micro-
seconds with the "D"
command and approximately
400 microseconds after
detecting the end-of-
command code ()=0DH). The
CY¥512 will then lower the
RUN line (pin 32), raise
the RDY line (pin 27) and
begin executing the
program. If the first
program instruction is
BITSET (and pin 34 has
been previously cleared)
the Programmable Output
line (pin 34) will go high
in less than 100 micro-
seconds from the rising
edge of BUSY/RDY.

PROG _L

RUN

= e (N L

By
ROy

| i
PROGRAMMABLE QUTPUT —= 200uSEC =

Figure 7.2 DOITNOW (Run) Timing Diagram.

STEP INHIBIT PIN

In the triggered mode of operation, the GO command initiates the
stepping sequence if the Step Inhibit pin is low. If the Step
Inhibit pin {pin #30) is high, the controller simply waits for a
low level on this pin and then takes the step. The level of the
pin is tested just before every step is taken.

STEF INHIBIT

MOTION COMPLETE i
—=t 7 mSEL ’—
1

Pigure 7.3 Step Inhibit Timing.

DIRECTION GONTROL

In the Absolute Mode of operation, in which target positions are
specified with the "P" command, direction is determined
automatically. If the specified position is greater than or
equal to the current position, the direction is set to clockwise
(CW), and if the specified position is less than the current
position, the direction is set to counter-clockwise (CCW). The
current setting of direction is indicated by the DIRECTION pin
{pin # 33). HIGH corresponds to CW, and LOW corresponds to CCW.
In the Absolute Mode, the DIRECTION pin is set just before
stepping begins.

42

In the Relative Mode of operation, in which the number of steps
to take from the current position is specified with the "N"
command, and stepping is activated with the "G" command, the user
may control direction with the "+" (CW) and "-" (CCW) commands.
The current setting of direction is still indicated by the
DIRECTION pin, and stepping will occur in the direction last set
when the "G" command is issued. The system powers up in the
clockwise direction. Note that the direction commands are
separate commands; they are terminated by the carriage return
character,)}=0DH. Thus, to specify 100 steps in the counter
clockwise direction it is necessary to send two commands:

=
N 100)
instead of sending:

N -100)

DIRECTION —| S00uED —

Nl Wl

MOTION COMPLETE

POSITION AT EMD OF MOTION z] 1 0

Figure 7.4 Direction indication. Program: P 2) P 0} +} G} -} G)

STEP TIMING SIGNALS

The PULSE output (pin #35) may be used as a step timing signal.
When the CY¥512 is not stepping, this output is high. It goes low
at the beginning of every step, and stays low for the duration of
the step. When the step time is over, PULSE goes high again.
PULSE remains high for about 40 microseconds between steps. This
time has been included in the rate equation.

The PULSE line also interacts with the TERMINATE/ABORT line (pin
#6). If TERMINATE/ABORT goes low while pulse is low, it is
considered a terminate function, in which the current step is
ended before the nominal step time expires. PULSE will go high
to indicate that the step is over. The rising edge of PULSE
should be used to clear the TERMINATE input. If TERMINATE/ABORT
is low while pulse is high (between steps), it is considered an
abort function, in which the down ramp mode is immediately
enabled., The step rate will decrease to the minimum wvalue for
the current settings of rate, slope, and factor. Then stepping
will continue to the target position at this slower rate. Note
that the ABORT input should be gated on by a high level on -PULSE,

43

so that it will not be confused with the TERMINATE input. A
suggested circuit is shown in Figure 7.6. The TERMINATE input is
sampled once every 15 usec while PULSE is low, and the ABORT
input is sampled once, about 7.5 nsec after PULSE goes high.

By combining the ABORT, STEP INHIBIT, and Stop Operation
functions of the C¥512, it is possible to bring a motor to a safe
halt, under emergency conditions, from a high slew rate. ABORT
is used to enable the down ramp mode, bringing the motor to a
slower step rate from the high slew rate. STEP INHIBIT may be

used to stop the motor once the rate is sufficiently slow to
accomplish this without losing steps due to system inertia. Then
the Stop-Operation function, using the QUIT command, could be

used to end the current step command before the target position
is attained.

s | ""'I n_n
TERM/ABORY - __l_J-l_! l_J

MOTION COMPLETE -—[800 WSEC —
i !

Figure 7.5 BStep Timing Signals for terminate.

Ta04]

ABORT T402

PULSE !
D SET
TEE.M'INATE CLK I
e

S N T 111 T T W I

TERM [ABORT v

MAOTIOM
CoMPL ——| 2 mSEC e

Figure 7.7 ABORT sequence.

44

STOP OPERATION

If it becomes necessary to halt a step seguence immediately, the
STEP INHIBIT line may be used to halt stepping, as explained
before. As long as the line is HIGH, the CY¥512 will not step.
However, the CY512 will continue to monitor the line, and will
continue the step sequence when the line is LOW again. In some
cases it is desirable to stop the motion and guit the current
step command. This capability is provided in the following way.
To stop the motion, use the STEP INHIBIT line. Then, to gquit the
command, issue a "Q" command to the CY¥512. When STEP INHIBIT is
activated, a delay egual to the step time must be executed before
the "Q" command is issued. The necessary delay may be computed
from the current step rate, or the rising edge of the PULSE line
may be used to indicate end of step. Then the "Q" command should
be issued by placing the ASCII "Q" on the Date Bus lines and
pulsing I/0 REQUEST low for 150 microseconds. This will insure
that the C¥512 will see the "Q" command. The current step
command will then stop, and the C¥512 will go back into Command
Mode, waiting to execute the next command entered. If the C¥512
was running a program when the "Q" command was issued, it will
also quit the Run Mode and go back into Command Mode. However,
the RUN line will still be LOW, so a "@#" command (followed by a
carriage return) should also be issued in this case. This
feature allows the user to quit any stepping operation, whether
in the Command Mode, or the Run Mode, regain control over the
CY512, and issue new commands. Note that this operation occurs
while the CY¥512 is in the "busy" state, so the normal BUSY/READY
handshake is not used. See the listing of an example Quit
routine (figure 7.8) and the timing diagrams for further details.

The Emergency Stop Operation should be used to halt the stepping
in exceptional cases only. It is not designed as a normal means
of halting the C¥512. After using the Stop Operation, it is best
to redefine the program, using the "E" and "Q" commands. BSome
internal pointers, which are incremented by the Stop Operation,
are not reset until an "B" command is executed. If too many such
coperations are done before another "E" command, operating
parameters and modes will be altered during normal command entry,
causing faulty operation of the C¥512.

45

SOFTWARE ABORT

STOPOP: 1SPECIAL ROUTINE TO IMPLEMENT STOP QPERATION
+HALTS STEPPING AND QUITS CUREENT.COMMAMND
0000 3IEOB MVI A, STPINH
Q002 D3IEF ouT BACNTRL +STEP INHIBIT=HIGH TQ STOP STEFPPING
7
WAITPLS:
0004 DBED IN STATOS
Q006 E6Q2 ANTI PULSE s LOW DURING STEP
Q008 CaA0400 JZ WAITPLS iWAIT FOR END OF CURRENT STEP
0Q00B 3E51 MVI B,'Q
000D CD2600 CALL CMDABCHAR ; ISSUE SPECIAL Q CMD, MO HANDSHAKE
0010 DBED IHN STATUS
0012 EcO4 ANI RUNBAR ;LOW IF RUNNIMNG A PROGRAM
0014 C22100 JHE ENDOP ;SEIP IF NOT RUN MODE
QOLl7 3E30 MVI A,'0"
ad19 Cp2600 CALL CMDARCHAR :ELSE ISSUE SPECIAL 0 COMMAND
001lC 3EOD MVI A,CR ;TO INDICATE BACE IN COMMAND MODE
001E CD2&00 CALL CMDABCHAR ;ALS0O NEED CARRIAGE RETURN (CR)
H
ENDOP:
0021 3EQA MVI A, TRIGGER
0023 D3IEF ooT BACNTRL ; RELEASE STEFP INHIBIT, LOW TO STEPR
o025 C9 RET
CMDABCHRR : sSPECIAL SEND CHAR DURING STOF OPERATION
0026 D3EC ouT DATA jOUTPUT CHAR FROM A TO DATA BUOS
0028 3E00 MVI A,TIOREQ
002A D3EF ogT B4CNTRL ;LOWER I/0 BEQUEST FOR VALID DATA
002C CDERDZ CALL T1500 sDELAY 150 USEC FOR C¥512 TO DETECT
Q02F 3EO01 MVT B ,NOIOREQ
0031 D3IEF ouT A4CHTRL sRELEASE I/0 REQUEST--NO HANDSHARE
P
WAITRDY:
0033 DBED IN STATUS 3CY¥512 WILL SHOW READY WHEM STOP
0035 E620 ANI READY jOPERATION IS5 COMPLETE
Q037 CAa3300 J2 WAITRDY
0038 C9 RET
PULSE I | 1\ |
STEP INHIBIT |'
MOTION COMPLETE

Lo REQG E’
mn

BUSY/
ROY

.
al_
U
"Enn,us«i ’—

Figure 7.8 Software Abort timing

46

HALF STEP OR FULL STEP

Steppers operate either in full step mode, with each step equal
in torgque output (proportional to current input), or in half-step
mode in which the drive current alternates between 1 and 2 (n and
2n) coils. The half-step mode doubles the number of steps per
revolution, thereby doubling the resolution. Although the torgue
is not maximum in the half-step mode, but varies, the wariation
tends to broaden the non-resonant bands; i.e., to diminish the
region in which resonance occurs.

The tables and waveforms below indicate the sequential values
assumed by the stepper drive signals. The tables alsoc indicate
how the step patterns correspond to the Offset parameter
specified in an OFFSET (0) command. Note that the OFFSET command
will set the internal step pattern pointer to that specified by
the parameter indicated. The actual next step pattern, which
will appear on the drive signal lines, depends on the direction
in which the C¥512 is stepping. When going CW, the next higher
value will appear, and when going CCW, the next lower value will
be used. Thus, if the command "O 2)" is issued, the internal
step pattern pointer will be set to step number 3. If the CY512
takes its next step in the CCW direction, the next step pattern
to appear on the drive signal pins will be that for step number
2, The OFFSET command does not change the current value output

on the drive signal pins,
FULL STEP DRIVER SIGNALS only the internal pointer

setting. This change will
STEP 1 2 3 4 1 not be noticed until the
CY¥512 takes the first step
31 0 1 1 0 0 of the next motion command.
@5 1 0 0 1 1 The OFFSET command is useful
$3 0 0 1 1 0 for switching back and forth
Dy 1 1 0 0 1 between full-step and half-
step modes without gaps in
OFFSET 0 1 2 3 0 the stepping patterns.

$‘ﬂ3n3ﬂ‘l:t'

Ty

bz

s

ba :

Figure 7.9 Full Step Control Outputs.

47

HALF STEP DRIVER SIGHALS
STEP |1 3 4 5 6 7 8 1
e |0 1 11 1 10 0 0
3; |11 0 0 0 i 1 11
o3 |0 0 0 1 1 1 1 1 0
83 |1 1 11 0 0 0 1 i
OFFSET| 0 1 2 3 4 5 6 7 0

#

b

By

P4

Figure 7.10. Half Step Control Qutputs.

The stepping waveforms indicate that outputs 1 and $2 are paired
together, as are outputs $3 and 4. &1 and %2 should be
connected to opposite ends of the same winding of a four phase
motor, and $3 and $4 should be connected to the other winding of
the motor. The user should study the waveforms and the motor
requirements carefully to determine the proper connection between
the phase outputs and the wires coming from the motor.

The phase outputs are considered on, or energized, when they are
low (@) and off, or de-energized, when they are high (1).

48

8 CY512STEP RATE INFORMATION 8

RATE CONTROL

Along with flexible and precise position control, the CY¥512
allows the user to define the step rate and acceleration rates in
very fine increments (10 microsecond changes with a 6 MHz
crystal). By proper choice of the rate, slope, and factor
parameters, it is possible to control the starting rate, the
number of steps from the starting rate to the slew rate, and the
final slew rate. 1In addition, by controlling the STEP INHIBIT
and TERMINATE lines, the user can achieve precise rate control
via an external pulse source or feedback from the motor assembly.

When external controls are not used to define the step rate, the
CY512 uses an internal timer algorithm to control stepping. The
algorithm may be modeled by the following equation:

CY¥512 Rate Egquation

steps per second = 1
{256-r) *B0psec + z*1l0usec + T5usec + 7.5usec

The equation and this discussion use several variables which are
defined as follows:

Rate parameter as set by the RATE command
Slope parameter as set by the SLOPE command
Factor parameter as set by the FACTOR command
Integer ((255-f)/s)

Internal factor walue

Mk HhA
I T (I T |

The variable y represents the number of steps required to ramp up
from the starting rate to the slew rate, and the number of steps
to ramp down again before stopping.

The internal factor, z, changes in value for each step while
ramping. When accelerating, z = 255 - n*s, where n is the step
number from the start of motion, beginning with n = 1. When
slewing, z = £, giving the maximum step rate for any particular
settings of r and £f. While decelerating, z = £ #+ n¥*s, where n is
the step number from the start of deceleration.

The above relationships indicate that the starting rate is given
by 1/((256~r)*80 + (255-s8)*10 + 75 + 7.5), and the slew rate is
given by 1/((256-r}*80 + £*10 + 75 + 7.5). Note that the psec
times indicated in the equations are correct for a 6 MHz crystal,
and must be linearly scaled for other crystal fregquencies.

The rate equation applies as specified when 1 < r £ 254. 1In the
case where r = 255, the rate will not follow the equation, but

49

will differ, depending on the direction of motion and full step
or half step mode. The appropriate rate for each case is
indicated below:

Step Rates for r = 255

CW CCHW
Full step 1/(218usec + z*10) 1/{232usec + z*10)
Half step 1/(224usec + z*10) 1/(230psec + z*10)

The "+ 7.5 usec"™ term in the rate equations represents an
uncertainty between the exact instant the step time expires and
the point at which it is detected. The time out is tested once
every 15 microseconds. PFor any given setting of the parameters,
the step rate will be a constant within the + range specified.
The CY¥512 will not exhibit a jitter from step to step.

Table VII is a listing of the range of possible slew rates for a
given setting of r. The slowest step rate in each range uses the
value £ = 255, and the fastest rate is obtained when f = 1.
Values are indicated for three different crystal freguencies; 2
MHz, the slowest rate, 6 MHz, the medium rate for which most
timing in this manual is specified, and 11 MHz, for the fastest
possible rates.

L

RATE T

T T T T L T
2 MHz 6 MHz 11 MHz
Rate r £=255 £=1 £=255 £=1 . £=255 £=1

G

i 2
e

1 14 16 43 48 79 89
25 15 p B 47 53 86 98
50 17 20 52 60 95 110
15 19 22 68 107 125

100 22 26 79 121 145
125 25 31 94 139 173
150 30 38 116 165 214
175 36 50 152 201 279
200 46 73 219 258 401
205 49 80 240 273 440
210 52 88 265 290 486
215 56 99 297 310 544
220 60 112 337 333 618
225 65 129 389 359 714
230 70 153 461 389 846
235 77 188 566 425 1038
240 85 244 732 469 1343
245 a5 345 1036 523 1899
250 107 589 1769 590 3244
251 110 687 2061 606 3788
252 113 823 2469 622 4484
253 116 1025 3076 639 5494
254 119 1360 658 7462

= TEEFETATE I TIRE R L R E LI SR E
TR R R TR

—————
i i i L i

A e o
e ek

e e

R 245
R 247
RE3&
4 RT2E
REle
R 195
133

5TEPS/ SECOND

R 754
253

R 52

d g5
249
R 245

R 231

R 25

— 1

FACTOR

STERS/SECOND

Figure 8.1 Step Rate vs. Rate Parameter with 1<f£<255.

B

RAMPING MODE OF OPERATION

The maximum step rate is defined by a combination of the RATE and
FACTOR parameters, as indicated in the step rate eguation. When
a motion begins, the step rate will not generally be at the
maximum rate, but will ramp up to this slew rate from a slower
value. The slope, or number of steps required to attain the slew
rate, is defined by the SLOPE parameter. When stepping begins,
an internal factor value (z) is set to 255, The value of the
SLOPE parameter is then subtracted from this internal factor once
per step, increasing the step rate as the factor decreases (see
the rate equation). Note that the RATE parameter is not changed
by this process, only the internal factor. When the internal
factor becomes less than or equal to the value specified by the
FACTOR command (f), the slew rate has been reached, and the
internal factor is set so the specified slew rate is maintained.
At this point the SLEW line (pin #29) is also brought low,
indicating that the maximum specified step rate has been
attained. The C¥512 will continue slewing until it is time to
down ramp to hit the target position. The point at which this
occurs is determined automatically by the C¥512., The SLEW line
is then turned off (set high), and the value of the SLOPE
parameter is added to the internal factor once per step,
producing a slower step rate until the target position is
reached, or the slowest rate is attained (internal factor=255).

If the number of steps to travel is less than the number required
to reach the slew rate and then ramp down again, the CY¥512 will
not ramp to the slew rate. It will just step to the target
position at a rate equal to that given by the current RATE
parameter and an internal factor of 255, the slowest step rate
for the current RATE parameter. The C¥512 does not partially
ramp up, then ramp down if the target position is too close. The
number of steps required to ramp up and down is given by 2*y. The
number of steps must exceed this value for the CY¥512 to work in
the ramped mode.

Note that FACTOR must be the last of the SLOPE and FACTOR
commands specified, since it performs a calculation based on the
other values. If the slope is changed, the FACTOR command must
be repeated after the new slope, to insure proper ramping
operation.

52

R 125

4081 oi5 1
5297 878 4
813 135

ty

g 8

o e - e

5 a7

= kg

n [

L]
45 agq
£ 1 | L 34
& 1]] 2
103 1 501 T
ATé aqzl
TIe E1C
LY b=
i
3 &
‘E BET 33 376,
i ™
@ &
97 4 L8
3T L | 209
=% [s] 5 0
pla
18&]
2
¥} gy
i L
E ‘T3 4 i
- &
o]
& &
[-
W '
11
| 1 1 L L
& 1S 15 20 m
MUMBER OF STEPS
Figure 8.2

53

G L 15 20
NUMBER OF STEFS

Variation of Rate Parameter with Position for five
different slopes.

DISPLAY OF RAMPED OPERATION

The display of several output lines is easily accomplished using
the end-of motion signal (INTREQl = pin 37) to externally trigger
the horizontal sweep circuits of an oscilloscope. The host
computer sends the setup parameters to select the maximum rate
and the number of steps to be taken and then sends the GO
command. The following timing diagrams illustrate the effect of
various slope parameters on the stepping behavior.

In the first example, figure 8.3, the parameters are chosen to
give a five step acceleration before slewing is indicated. With
a number of steps equal to 16, the C¥512 will accelerate through
five steps, slew for six steps, then decelerate through five
steps. In the next example, figure 8.4, the number of steps is
changed to six, while the other parameters are unchanged. Since
five steps are required for ramping up, and another five steps
for ramping down, the number of steps must be greater than 10 if
the C¥512 is to step in the ramped mode. Remember y =
Integer ((255-f)/s) = 5, and the number of steps must exceed 2%y =
10 for ramping to occur. Since six is not greater than ten, the
C¥512 takes the six steps in a nonramped mode, stepping at a
slow, constant starting rate for all six steps. The third
example, figure 8.5, changes the slope and number of steps. 1In
this example, the C¥512 takes only three steps to ramp to the
slew rate. It then slews for two steps, then ramps down for
three steps again. By changing the slope, the C¥512 works in a
ramped mode through a smaller number of steps than regquired in
the first example. The final example, figure 8.6, maintains the
same slope and number of steps, but varies the rate parameter.
The CY¥512 ramps, as in the third example, but the step times are
different, due to the new rate parameter. This is especially
evident during the slew steps.

ST U W T I 11171171 I 1 W

SLEW

MOTION COMPLETE == 2 m3ELC |-— .

Figure 8.3 Ramp Rate Timing Example: R 253) S 50) F 1) N 16) G)

= | | ! I B

SLEW

MOTION COMPLETE : | 2 mszc
| L

Figure 8.4 Ramp Rate Timing Example: R 253) 5 50) F 1) N 6) G}

54

e 11|
SLEW l '

MOTION COMPLETE —‘ 2 mSEC |-—

Figure 8.5 Ramp Rate Timing Example: R 253) S 80} F 1} N 8} G)

PULSE _l _l l l l A A a—
SLEW ‘
MOTION COMPLETE —-I 2 msEC '._ L

Figure 8.6 Ramp Rate Timing Example: R 240) S 80) F 1} N 8) G}

From the Rate Equation it is possible to derive Stepping Rate vs.
Elapsed Time and Elapsed Time vs. Position relationships. The
plots shown in Figure 8.2 indicate Stepping Rate vs. Position.
The Rate Equation yields the step rate for each step, which is
the inverse of the time duration of each step. In order to get
elapsed time from the equation, it is necessary to sum the times
for all the steps involved. During acceleration, the time
duration of step n is given by:

t(n) = (256-r)*80psec + 10* (255 =« n*s)psec + 75usec + 7.5pusec

where n ranges from 1 to v, the number of ramp steps. This time
will be in microseconds for the values shown, and is directly

related to the Rate Equation. The step rate for step n would
then be R({n) = 1/t{n).

To determine the elapsed time for n steps, simply add the step
times for each of the n steps. This may be done one step at a
time, or by using the following equation:

n
T{n} = n*¥[(256-r)*80 + 75 + 2550 - (n+l)*5%*s] usec = E Ei{x)
x=1

55

The following plots show Rate vs. Elapsed Time,

and Elapsed Time vs. Position,
factors are shown, with five different values for slope in esach

[T(n) vs. n].

[R(n) vs. T(n)],
Various rates and

case.
STEF RATE ws ELAFPSED TIME 1437 ELAPSED TIME vs TRAVEL . .
= ;)
Gl s s {15 P = FACTOR=24 P
a 5 -
iig | L4 / z 115TRATE=235% "
1]
332 1 / /j ,rfj E
rf /') : s :
348 4 // =
W, w
287 | ﬁ?/" _J,,f’ RATE=235 ﬁ
éé?x/,, FACTOR=24 &=
335-—ﬁfJﬁg + —- : 4 w
B 28 S7 86 115 143 o a t2 27 26 46
ELAPSED TIME IN MILLISEC TRRVEL IN STEPS

Figure 8.7 Acceleration Plot:

R 235) F 24) for § = 5,10,15,20,25

STEF RATE wve ELAPSED TIME
dalt 25 [19 s
853 4+ o Zm15

: /

n
Fopigt ik /

o | ! ,f
s71 L2 f A

Al

S
438 | ff , ATE=245
r,{:f/ " FACTOR=2
':ng _‘_f--'_'_ﬂ}
@ 2z 44 &6 8BS 111

ELRPSED TIME IW MILLISEC

M5

ELARPSED TIHE IH

1117 ELAFSED TIME ws TRAVEL .
FACTOR=3 o
B9 TRATE=245 ,ﬂf
e
66 + o
Pl 1
da 1 P
// 15
Y
22 | e
B
& g 286 I8 486 S@
TRAVEL IM STEPS

Figure 8.8 Acceleration Plot:

R 245) F 3} for 8 = 5,10,15,20,25

56

IEIETETEPJRHTE vz ELAFSED TIME g v ELAPSED TIME wvs Tﬁﬂuibﬁ, ¥
1]
23#15 [12 f 3 = FACTOR=7S ot

. / ‘ = 53 TRATE=254 g

] - I

e [[/ [y W 49 ; ;J

I |J .H' £ : L ,/_'_,.r”' 1’3
E5E [/ S 26 | S
) FJ ~ o £ 15
! A S 1,"" 28
s95 4 WS <" RATE=254 013 4 8
ot FRCTOR=7S T
N -

363 s { - + 4 w @ e R B B B B B
5 12 26 48 53 &6 A - 14 21 55 2z
ELAFPSED TIME IN MILLISEC TRAVEL IW STEFS

Figure 8.9 Acceleration Plot: R 254) F 75} for S5 = 5,10,15,20,25
STEF RATE v¢ ELAFSED TIME : .
- ¢ i -5 - ELAPSED TIME vs TRAVEL =
|] i Hf‘_'_,_,.n-

e (s = FHCTOR=1m@ e

2341 = =z 58 TRATE=254 =
] - -

= =] Ll 5 -

123 = | = % /{

F i : z/ =113

1413 I / a4 /j;f’

/ o R
] .l'l e VJ/ @
ae3 |'l,|', f ;" FAT 254 E 15 .| ':‘,E
,ﬁ-fff’ __ERCTOR=18 =

363 =S S " " w a bbb
@ 15 34 45 5 a s @ g 19 =g 28 45
ELAFSED TIME IN MILLISEC TRAVEL IH STEP:

Figure 8.10 Acceleration Plot: R 254) F 10y for 5 = 5,10,15,20,25

STEF RATE ve ELAPSED TIME . . :
= FACTOR=3 foffxf
2ET =z €8 TRATE=254 -
[2015 B
2258t & W 45 7 ///;”
r-;] L) v e 1@
1622 & |] ~ 30 | A
! =
- } J, = #ﬁg.iﬁ
%33 | fﬁ T EﬁT5§é54 ® 15 | 5 €9
o
s _FEBeTOR=3 T
s Lot o L
@ 5. 38 4% &® ¥3 G 16 28 3Ia__ 48 59
ELAFSED TIME IH MILLISEC TRAYEL 1IN STEPS
Figure 8.11 Acceleration Plot: R 254) F 3) for 8§ = 5,10,15,20,25

57

SLEW MODE OPERATION

Many applications regquire that the stepper move at its maximum
stepping rate. In most situations, the mechanical constraints on
the system prevent the motor from accelerating from zero speed to
maximum velocity in one step. For this reason, it is desirable
to accelerate or "RAMP UP"™ to step at the desired rate. The
SLOPE command provides the "RAMP RATE", defined as the change-
in~-factor/step. The maximum rate desired is specified by the
RATE and FACTOR commands as usual, and the number of steps
desired is specified by the "N" command, as usual. A typical
instruction sequence is shown below. Note that FACTOR should be
the last of the SLOPE and FACTOR commands to be executed, as it
computes an internal value based on the other parameters,

N 1095} ;set number of steps = 1095

R 220) ;5et maximum rate = 335 steps/sec (see Table VII)

5 12j :change in factor parameter per step
F 1 sminimum factor parameter wvalue
Gy ;begin stepping

This instruction sequence sets the number of steps to be taken,
the maximum rate of travel, and specifies the change in the
factor parameter per step. The ramped operation is generally
satisfactory at low or medium speeds but may require external
timing at higher slew rates. Note that at the higher step rates,
the dependence of step rate on rate parameter is non-linear as
shown in Table VII. Also, the interaction between the various
parameters is non-linear, as indicated in the wvarious curve
plots. Some combinations of values may accelerate your motor to
higher slew rates than other combinations. The user is
encouraged to experiment with various values for the parameters
before resorting to a more complex timing scheme. An example of
such timing is shown in Figure 8.l12c. In this example the BITSET
instruction precedes the GO instruction in the program. This
causes pin #34 to go HI and the capacitor begins charging. The
output of the V/F follows the voltage step. While this circuit
does not provide the ideal deceleration, it is suggestive of the
type of open loop external control possible.

a . e
= o
STEP STEP
a.) Ideal b.) Actual ¢.) External Control of Ramp up

Figure 8.12 Actual and Ideal acceleration curves and example
external ramp-up control circuitry.

58

Slew Mode Example

Consider a command sequence to
cause the CY512 contreller to
accelerate the motor with a
slope that decreases the
factor parameter by 5 with
each step taken, until a
maximum rate of 180 steps/sec
is reached (this corresponds
to r = 190 and £ = 20....see
Table VII) and then decelerate
from this maximum speed to
stop 513 steps from the start
position. To enter this
command segquence into the ey
CY¥512 program buffer, we send
"E" followed by "}", then the
command string terminated by
"Qg" for QUIT,. FParameter
values may be set via commands ropnay
prior to program loading, thus gecauE
allowing all of the program

buffer to be used for active
instructions. Execution of
the program begins when a "D"
(DOITNOW) is sent to the
C¥512. Note that a single
motion of this kind may also
be executed directly, without
loading the program buffer.

Figure 8.13
CY¥512 Programming Example.

CLOSED LOOP CONTROL

The constant slope acceleration implemented in the C¥Y512
controller allows higher step rates than would be achievable with
non-ramped stepping signals. The maximum rate attainable with a
small slope may be sufficient, however the long acceleration
times may be impractical for a given application. As is
generally true, optimum performance can be obtained via closed
loop feedback, and this is true for the CY512. Although the term
"closed loop control" often indicates a rather high level of
complexity and circuit analysis, the C¥512 provides for closed
loop operation with its corresponding optimal performance via the
use of a slotted disk attached to the stepper shaft and an
economical optical "interrupter" module of the type commercially
available from several sources. The use of a "slotted disk™ on
the shaft to break a light beam allows a position signal to be
fed back to the CY512. As shown in Figure 8.14, this signal may
be converted to digital levels via a Schmitt Trigger and used to
trigger each step. Thus at low rates, the motor accelerates
normally and the rotor is in position when the next step signal

59

arrives. At higher rates, the next step signal may occur before
the motor has completed the last step. 1In this case the optical
feedback will cause the trigger input to be low and therefore
prevent the step from occurring until the previous step is
completed. Thus, maximum performance is obtained for the given
stepper motor. Note that the standard shaft encoder would also
work in place of the slotted disk assembly. The C¥Y51l2 only
requires some mechanism for controlling the STEP INHIBIT and
TERMINATE lines. The circuit shown below runs the Step Inhibit
line, which will slow the CY512 from a rate which is too fast for
the motor. If it is also necessary to speed up the step rate,
providing complete feedback control, the circuit below may be
combined with the Abort/Terminate separation logic shown in
Figure 8.15.

S

STEP
IHHEBIT

scrmiTT
TRIGGER 4

IMTERRUPTER
MODULE

pULSE

Figure 8.14 An interrupter module with slotted disk prowvides
position feedback to assure that the maximum step
rate never exceeds the motor's ability to keep up
with the controlled fields, and the motor can
accelerate at its maximum rate. Note that some
interrupter modules include a Schmitt Trigger to
produce a TTL output that can be input directly to
the CY512.

TERMINATE

TERMINATE

Figure 8.15 ABORT/TERMINATE Separation Logic.

60

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXTMUM RATINGS:

Ambient Temperature under biaS...........0°C to 70°C

Storage Temperature..ccscccecannanasns «ns+—~B5°C to +3150°C
Voltage on any pin with respect to GND...-0.5V to +7V
Power Dlismipatiof..corassssnnsnnpnnanies .1.5 Watts

R I R P S A0S ELEE TR L SR R R TR TR TR il**ifi{F
TABLE VIII DC i OPER!IIHG CHARACTERISTICS Ei

LR R R R R bR e AT A

(Tp = 0°C to 70°C, Vgg = +5V4108)

PARAMETER MIN |MAX [UNIT REMARKS
pwr supply current 100 | maA
input high level | 2.0 | V.| V | (3.8V for XTAL; ,RESET) [|

input low level -.5| .8/ V | (0.6V for XTALj ,rRESET)

1 Io data bus leakage 10| pA |high impedance state
| Vog |output hi voltage | 2.4 V |Igg = -40 pA

Vor cutput low voltage 45| V. |Ig, = 1.6 mA

Foy crystal frequency 2 |11 | MHz |see clock circuits

i

i

NI N T T

ELECTRIGAL GONVENTIONS

All CY512 signals are based on a positive logic convention, with
a high voltage representing a "1" and a low voltage representing

a "@§". 8Signals which are active low are indicated by a bar over
the pin name, i.e., PULSE.

All input lines except I/0 Request, Terminate/Abort, and I/0
Select include 50K ohm pull-up resistors. If the pins are left
open, the input signals will be high.

The data bus is bidirectional, and is tri-state during nonactive

modes, Note that data bus signals are positive logie, and all
command letters are upper case ASCII,

61

RESET CIRCUITRY

The RESET (pin #4) line
must be held low upon
power-up to properly
initialize the CY¥512.
This is accomplished via
the use of a 1 pFd
capacitor as shown in
Figure 9.1. RESET must
be low for 10 msec after
power stabilizes on
power—-up. Once the CY¥512
is running, RESET need
only be low for about 15
usec (6 MHz crystal).

Figure 9.1 a)Reset Circuitry.
b)External Reset,

CLOCK CIRCUITS

The CY512 may be operated with crystal, LC, or external clock
circuits. These three circuits are shown in Figure 9.2. Unless
otherwise specified, all timing discussed in this manual assumes
a 6MHz series resonant crystal such as a CTS Knights MP060 or
Crystek CY6B, or equivalent. The C¥512 will operate with any
crystal from 2 to 11 MHz, including a standard 3.58 MHz TV color
burst crystal. All timing values specified in this manual will
be changed by using different crystal frequencies. Time values
must be scaled by 6/fcy, and stepping rates must be scaled by
fcy/6, where fcy is the crystal frequency in MHz. Note, however,
that the "X" command is calibrated for milliseconds at 11 MHz.

CRYSTAL SERIES RESISTANCE ¢=Ce3tpp o1 15y BOTH XTAL1 & XTALZ
SHOULD BE LESS THAN 7551 z Zn i SHOULD BE DRIVEN.
AT eMilz AND LESS THAN R —
18015 AT 3.6 MHz. o= En
P BN CAPACITANCE
— ,c

EACH C SHOULD BE RESISTORS TO*5V ARE WEEDED

== 15-25pF :
I_ °P APPROX 20pF, INCLUDING TO INSURE Vi1 =3.8Y |F
= INCLUDES XTAL, STRAY CAPACITANCE TTL CIRCUITRY 15 USED.
| STRAY. EACH PIN MUST BE HIGH FOR 35-65%
NoT HEEDED OF THE PERIOD.
ABOVE 4 MHz. RISE AND FALL TIME MUST NOT EXCEED
0 KMANDSECONDS.
CRYSTATL LC

EXTERNAL
Figure 9.2 Clock Circuits for C¥512.

62

10 CIRCUITS AND EXAMPLES 10

CY512/KIT

Since the CY512 contains all the logic needed to operate a
stepper motor, including instruction decoding, parameter
maintenance, and step timing, very little external circuitry is
required to get a minimal stepper motor subsystem operating. A
circuit indicating what is required is shown in Figure 10.2. As
a convenience to our customers, Cybernetic Micro Systems has
implemented such a circuit on a small printed circuit board.
This board is made available as a kit, including all parts
necessary to put the board together. A photograph of the
C¥512/Kit is shown in Figure 10.1.

The design consists of the CY¥512 with associated peripheral parts
(crystal, socket, capacitors, ete.), buffers with LED indicators
on CY512 output signals, switches for C¥512 inputs,
Abort/Terminate logic for closed loop motor operation, and a
simple, unipolar driver circuit for the -motor. Three edge
connectors make the various signals available to the rest of the
system. Signals are divided into a Data Interface, Secondary
Control lines, and the Motor and Power Supply connections.
Finally, about half of the board consists of a wire-wrap area,
useful for special data interfaces or motor driver circuits.

The kit supplies all parts needed to assemble the board, with
assembly reguiring only a few hours. 1In addition to the kit, the
user must have a power supply, a source of commands for the CY¥512
(keyboard or computer), and a four-phase stepper motor. Complete
documentation is provided. The C¥512/Kit is ideal for
prototyping, allowing first time users of the CY512 to quickly
and easily get their part into operation.

COMPLETE KIT SHOWN ASSEMBLED
Figure 10.1 CY512/KIT board available for prototyping.

63

TEST DEMONSTRATION GIRCUIT

Ay BOLS1 SHYEL MOLDH avg
MNEA HO INTTHLE

(W ASE)

IDVLI0ON A0L0W
X5 LOM 41

(35WHd HXWI &1 0Ldn)

010w H3ddILs
ASVHd P OL
L, wivd
aoaAIN
aIn-=
o5[
] =
L T
T
[EA
F804LS
T QAV0a AN

A,

*ssodand sTY3 103 TESPT ST T°0T 2anbid uj

umoys LIN/ZTSAD @yl *diay osTe TTT#4 Adouanbaig
Te3sdA1o I3MOTS W *gandaino a8yl uo pasn aIie sgAET]
JT I3sn a2yl o3 8TQTISTA 28I SUOTJTSURI]} 3yl eyl os ‘partzroads saje1 MOTS saey
saTduexa butwil 8yz ur pasn sweaboiad syy -Tenuew sIY3 Jo yoeq a8yl utr sweaberp
Butwty perrezep ayiz ybnoiyz bBuixiom uaym ani) ATTeioedss ST STYL *BUOTITSURI]
@3181318 pue aje3ls ayjy Aerdsip ATTensia 03 s2ull andane TTe uo (saporp Buriltwa
I4bTIT) sgaT @sn o3 njydiey Arrersusb sT 3T *ZTGAD 84l ToIjuco o3 pivogisy IIDSY
ue Jo asn smoTTe 3eyy dniss oTdwis e septacad z*(0T 2anbT4 UT umoys AI3TNOITD 3y

Figure 10.2 Test Demonstration Circuit

64

DRIVER CIRCUIT CONSIDERATIONS

The C¥512 provides the timing and logical signals necessary to
contreol a stepper motor. However, to make a complete system, a
driver circuit must be added to the C¥512, This circuit will
take the logical signals generated by the C¥512 and translate
them into the high-power signals needed to run the motor.

The user has two choices in the selection of driver circuits.
Existing designs, usually in the form of pulse-to-step
translators, may be used, or special designs may be created.
Translators usually require a pulse and direction input, or two
pulse streams, one for CW stepping and one for CCW stepping. The
translator takes the pulse inputs and generates the proper four
phase outputs for the motor. MNote that it is also possible to
drive motors with this scheme which are not four phase designs.
Since the translator generates the actual motor driver signals,
it only requires the pulse timing and direction information
generated by the CY512 Pulse and Direction signals. This allows
the CY¥512 to control three and five phase motors as well as the
standard four phase designs.

PULSE o PULSE
e
DIRECTION = @ :“?
& . =
z =
=
DIRECTION =
| _
CY512 CY512

Figure 10.3 C¥512 to Translator Driver connections.

If the user opts for his own driver design, the Pulse and
Direction lines may be used, or the four phase outputs may
directly control the driver circuits. This type of design makes
full use of the C¥512 signals. The following paragraphs are
meant as a guide to various types of driver circuits, but should
not be used as final driver designs. Detailed switching
characteristics, transient suppression, and circuit protection
logic have been omitted for clarity and simplicity.

Unipolar designs are the simplest drivers, and are generally
useful when running at less than 600 steps per second. These
designs require motors with six or eight leads, since the power
supply is connected to the middle of each winding. The end of
each winding is pulled to ground through a transistor controlled
by one of the phase output lines from the C¥512, Motor
performance may be improved by adding a dropping resistor between
the power supply output and the center tap of each winding. This
decreases the field decay time constant of the motor, giving

65

faster step response. The performance increase is paid for by a
higher voltage power supply and heat losses through the dropping
resistors. This type of circuit is know as an L/XR circuit,
where the x represents the resistor value relative to the winding
resistance. An L/R circuit would not have any external
resistors, while an L/4R circuit would use a resistor of three
times the value of the motor winding resistance. Note that the
power supply could be four times the nominal motor value with
this circuit. Also note that this circuit requires only a single
voltage and one transistor per phase.

"J"‘ 1,,r+
DROPPING RESISTOR

< e e

Figure lﬂ;é Unipolar driving circuits.

The second basic type of driver circuit is the bipolar design.
In this case, the motor is driven only from the ends of each
winding, with switching logic used to control the direction of
current through the winding. These circuits may be implemented
with a four lead motor, since only the ends of each winding are
needed. Bipolar designs are more efficient in driving the motor,
and result in higher performance than the unipolar designs. Two
methods of switching the direction of current may be used. With
a single voltage power supply, eight transistors are used, two
per phase., Transistors are turned on in alternate pairs across
each winding to control the current. The second alternative uses
only four transistors, but requires a dual voltage power supply.
In this case, one side of each winding is connected to ground,
and the other side is switched between the positive and negative
power supplies. 1In both designs it is very important to insure
that both transistors on one side of the winding are not on at
the same time, as this would short the power supply through the
transistors, generally destroying the transistors in the process.
Protection logic is usually included to insure that one
transistor is off before the other is allowed to turn on.

®

DROPPING
EESISTOR

DROPPING
&, RESISTOR &

Figure 10.5 Bipolar driver designs.

66

The most advanced driver designs are variations on the unipolar
or bipolar types, although they are generally implemented using
the bipolar approach. These drivers are capable of the highest
step rates attainable. They work by switching current or voltage
through the motor at much higher than the rated value. This is
done for only a short period of time, causing the magnetic field
in the motor to change very gquickly, without exceeding the
maximum power dissipation of the motor. As long as the average
dissipation does not exceed the motor rating, the motor will
perform without problems. Once the maximum limit is reached, the
motor may overheat and self destruct. One technigue for
increasing motor performance would simply apply a high voltage to
the motor at the beginning of each step. This makes the motor
react very quickly to the change in phase signals. After a short
period of time, the voltage is switched to a lower wvalue,
allowing the motor to continue its motion without overheating. A&
second approach, known as a constant current design, senses the
amount of current flowing through the winding, and adjusts the
voltage applied to the motor to maintain the current at its
maximum rated value. At the beginning of a motion, the voltage
would be low, with a constant adjustment to a higher value as the
motor speed increases, and back EMF decreases the current draw
for a fixed voltage level. Another technigue, known as chopping,
may also be applied to these driver designs. This approach
applies a voltage much higher than the rated value for a short
period of time. The woltage is then turned off for another time
period. This occurs many times per step, with the frequency of
switching known as the chopping frequency. This frequency may be
controlled by time, switching at a given rate, or it may be
controlled by sensing the current flow through the motor,
switching at a variable rate. The highest performance drivers
are usually designed as bipolar chopper circuits.

The user should consult design guides available from the various
motor manufacturers for additional information.

67

'HANDSHAKE PROTOCOL

All commands and data transmitted from the master processor to
the CY¥512 peripheral processor are sent asynchroncusly with
complete handshaking performed. The master processor waits for
the CY512 READY line to go HIGH before sending the active LOW I/0
REQUEST signal. The data may be placed on the bus at any time
prior to the HIGH-to-LOW transition of I/0 REQUEST. The data
should be stable on the bus until the CY512 RDY line goes LOW,
indicating that the transfer has been acknowledged and that the
CY¥512 is BUSY processing the command or data. The master then
brings I/0 REQUEST to

the HIGH state. The VALID DATA
as soon as BUSY/RDY \ T e e S e ey -
returns HIGH. The 1/0 . - T\
sequence described is % | (=N as|)
shown in Figure 10.6. N \ ,) o
—— —
BUSY/RDY e - N

Example 8080/85 Driver: ASCII mode operation Bit 7 of data used
as I/0 REQUEST strobe, Routine entered with ASCII in C-register.

SENDCHR:
0069 DBED IN STATUS
006B E620 ANI READY
006D CAG900 JZ SENDCHE ;WAIT TIL READY
aaro 79 MOV A,C
0071 E&7F ANTI TFH
0073 D3EC ouT DATA sWITH I/0 REQ LOW
BUSY:
0075 DBED IN STATUS
0077 E620 ANI READY
0079 C27500 JNZ BUSY PWAIT TIL BUSY
007C 3EFF MVI A,0FFH
007E D3EC ouT DATA :11/0 REQ HIGH
0080 C9 RET

Figure 10.6 Data Transfer Handshake Segquence

ASCI]

1/ REGUEST

 EE

Figure 10.7 Write Strobe Generator for keyboards without strobe.

68

In the example shown in Figure 10.8, the CY¥512 is operating in
the PARALLEL ASCII input mode. 1In this mode, bit 7 is always
zero and by line of the CY¥512 data bus may be tied to ground.
Since the user will normally transfer bytes of data from memory
to the output port, the most significant bit of the data byte may
be used to generate the I/0 REQUEST strobe, thus allowing only
one 8 bit output port to suffice. The "SENDCHR" routine, shown
in Figure 10.6, demonstrates the coding used to achieve this. Of
course, a separate port line may be used to generate I/0O REQUEST,
if this is desired. If the C¥512 is operated in the
PARALLEL/BINARY mode, all 8 data bus lines are used, and a
separate I/0 REQUEST line is reguired. Note that in the example
shown, use is made of the fact that the data and the I/0O REQUEST
signal may be applied simultaneously in parallel operation. If
Verify mode is to be used, all 8 bits of the data bus must be
free to operate bidirectionally. In this case, it is generally
best to make I/0 REQUEST and I/0 SELECT separate lines from the
data ports. See Timing and Control Information in section 7.

¥ 1501] MODE OF OPERATION OF
CY5I2 ALLOWS By OF DATA BYTE
TOSERVE AS I/0 REGUEST PULSE.
[SEE PROGRAM CODE)

1/0 REQUEST

PORTS: g
- ;
| PROGRAMMABLE
| /0 DEVICE 5
Cp=— BUSY/RDY
B eV ASCI/BIN
L{0 SELECT

Figure 10.8 Example Interface to C¥512 using 8255 PIO.

OPERATION OF SEVERAL CY512S USING A COMMON DATA BUS

In systems where multiple C¥512=s are to be controlled by a host
computer it is possible to use one eight-bit port to establish a
common data bus for sending instructions to the C¥512s. Each of
the separate RDY lines (pin 27) of each CY¥512 must be monitored
individually and each I/0 REQUEST line (pin 1) must be activated
separately. This technique effectively uses the I/0 REQUEST line
as a chip select (CS). A CY512 will ignore all bus information
if its I/0 REQUEST line is inactive.

69

FROM HOST T} TToATE 3 T
MEM 5 i Sk o et AL

SEPARATE | I/OREQy
1/0 REQUEST < [/0 REQy
LINES | 1/0 REG

Figure 10.9 CY512s ‘share common data bus by using separate I/0
REQUEST lines for chip select.

SYNCHRONIZATION OF TWO CY512S

Two C¥512s, executing the same program, may be synchronized as
shown in Figure 10.10. The master controller can control the
WAIT line of the slave CY¥512 via the BITSET or CLEARBIT commands.
The slave CY512 is started first, with a DOITNOW command, and
executes a WAIT command and waits until the wait line (pin #38)
is driven low by the CLEARBIT command executed by the master
CY¥512 when it receives the (second) DOITNOW command. Both C¥512s
then proceed to the next
instruction and are
synchronized as shown in Figure
: 10.10a, to within approximately
: 10 microseconds. WNote that

STEP IHH:_]__.I— when the two programs are not

; identical, the master can also
I wait for the slave to-execute
| its own CLEARBIT instruction,
| and thereby achieve a more

e L general synchronization.

]
4

PULSE 2

a.) Timing Diagram

MASTER SLANE
PROGRAM PROGRAM

e — Ui

PROG DUTPUT
WAIT ; [

CY512,

PULSE,

CY512,

STEP INHIBIT2

STEP INHIBIT, PULSE2 IDENTICAL PROGRAMS

b.) Hardware c.) Software

Figure 10.10 Synchronization of two CY¥5l2s.

70

COORDINATION OF SEVERAL CY512S

Multiple CY512s may be synchronized to each other by use of the
Programmable Output line, the Wait functions, Dowhile signal, and
time delays. These may also be combined with other signals, such
as Direction, Slew, or Motion Complete, used to select the point
in the motion when the signal is presented to the waiting
controller. Consider a general parts handling function in which
the part must be handed off between two controllers, The
geometry of the parts and the arms used to carry the parts
requires that the hand off be carefully synchronized between the
two controllers. The one to receive the part waits at the
receiving position until the C¥512 which has the part signals
that it has arrived. The two arms then move together in a
coordinated motion, reaching a point at which the distance
between them is a minimum. The part is exchanged and the arms
move apart, again in a coordinated motion. Once a certain
position is reached, the arms are free to move independently, and
continue with their assigned programs. If the motion is
repetitious, both controllers can work with the same program,
always being resynchronized at the hand off. The following
program illustrates such a motion.

H) Use halfstep mode

A) Declare current position as home

R 225}

8 25) ;Define stepping parameters

F 5}

P 14) Move to the receiving position

E) Define hand off program

uj Wait for a part to arrive

P 0) Arms move together to handoff position
+) Change direction

C} Activate mechanism to transfer part

X 90} Delay for part to actually transfer

P 14 Mowve apart, back to receiving position
X 90) Delay for part to stabilize, arms apart
P 108) Transport part to next handoff position

=) Low DIR & PROG OUT indicates part arrived
P 122) Move together with receiving arm

B) Release mechanism which holds part

X 90} Delay for part transfer to receiving arm
P 108} Move apart, back to receiving position

X 90) Delay for part to stabilize, arms apart

R 20) Change step rate to slower rate

P 0} Move empty arm back for next part

P 14} Stay at the receiving position

R 225) Change rate back to faster rate

T} Repeat program if Dowhile law

g Else stop program

Q End of program

D} Run program
Figure 10.11 Synchronized part transfer example. \\xh_

71

EXAMPLE PROGRAMS AND WAVEFORMS

PULSE v

BEEARE B EEEE

i | I H
MOT]
i I 1 I Y
|
® g '@ 2 &, ©
s G L a— -
OUTPUT KF/ L
|
u |
WALT I
STEP INHIBIT | _'!':'-555"- I["‘"
|
The timing sequence for a typical program
R 20) is shown in Figure 10.12. Inthis
F 80) example, the rate parameter, factor, and
N 1) number of steps are present before
C) entering the program-entry mode via the

D}

"E" command. These parameters are chosen
to allow easy observation of the outputs
using the test/demonstration circuit
shown in Figure 10.2. The program
entered sets the programmable output (pin
#34), then takes three steps, clears the
programmable line, and waits for the WAIT
line (pin #38) to go low when the wait
UNTIL instruction is executed., As shown,
the STEP INHIBIT line has gone high, and
the C¥512 waits for this line to go low
before stepping. The three-step motions
are done one step at a time, using the
LOOP command and a time delay between
each step. The time delay is used to
create a very slow step rate, which can
be more easily observed. If the Dowhile
line (pin 28) is low when the Til command
is executed, the program will repeat from
the beginning. When pin 28 is high, the
program stops and the CY¥512 returns to
the Command mode. Two program loops are
shown in the waveforms.

Pigure 10.12 Sample Program and Timing Diagram.

72

Figure 10.13 provides timing relations for a command seguence
that inputs the parameters and executes a "G" command to begin
stepping. The I/0 REQUEST, BUSY/RDY, and INSTROBE signals are
related to the data bus and several outputs are shown as a
function of the STEP INHIBIT input.

COMMAND MODE INPUT SEQUENCE:
R 10) set RATE = 10
S 255) set SLOPE = 255
F 80} set rate FACTOR = 80
N 4) set NUMBER of steps = 4
G) GO, begin stepping
G} G}

1/0 REQUEST "

Y
) I —
|

MATION COMPLETE

STEP INHIBIT

L2l

Pz

B3

b L
HOT TG SCALE

Figure 10.13 Timing Diagram for Commands.

The use of the "loop TIL"™ instruction is illustrated in Figure
10.14. The PROG and RUN outputs are also shown as a function of
the "Q" and "D" commands and the "@" instruction. The program
loops until the DOWHILE line (pin #28) goes high, then fetches
the next instruction. The effect of the STEP INHIBIT input on
the MOTION COMPLETE output is also shown.

3

RUN 1 | .
" 09 €3 €3 T |
|

[REG |

MOTION COMPLETE J U U l ,—l :I

::nmm { 1 | urr f/—le

o Ly T a

§ / | ll.-"lll |I
PROG OUTPUT \ ; | / /-ﬁ-\ .|
T T | | |
PROGRAM @@ I 2 @(JE') é@@é @@ T @@_g
[MAT T3 SCALE)
PRESET: C) clear output line
R 10) set RATE = 10
S 255) set SLOPE = 255 = | PRESET PARAMETERS

F 50} set FACTOR = 50

N 3) set NUMBER steps = 3
ENTER PROG: E) - MAIN PROGRAM LOOP
B} set output line » e
PROGRAM +} set CW direction o
CODE G} GO, begin stepping |y .- ol iy
C} clear ouput line LDOP TIL TRUE
-} set CCW direction
G) GO, begin stepping

T} repeat above prog Til DOWHILE = EXFTECERPTE
’ PASSED

B} set output line pd

C) clear output line Pp”

@} exit run mode, enter command mode

QUIT: Q
EXECUTE: D} DOITNOW

Figure 10.14 Timing and Control for Program Entry and
Conditional Looping.

74

RS-232-C RECEIVE ONLY INTERFAGE DESIGN

When the user wishes to communicate with the C¥512 over a serial
data link, a special data interface, such as the RS-232-C design
shown in this section, must be used. The main component of such
a design is the UART (Universal Asynchronous Receiver
Transmitter), which transforms the serial data from the data link
into the parallel form required by the C¥512.

The design shown here is a "receive only" type, meaning that it
can only receive data, not transmit. This design will allow the
user to send commands to the CY¥512, but will not allow the Verify
mode to work. Bidirectional communication through a UART is very
difficult with the C¥512, because there is no direct control over
the I/0 SELECT line or the number of bytes to transmit from the
C¥512. Those who require the Verify mode must use a more
sophisticated design to control the handshake protoceol during the
verify portion.

As shown in the schematic below, only two signals are needed from
the RS-232~-C lines, Transmitted Data contains the data sent by
the host to the CY¥512, and Signal Ground is a reference for the
data line. Since signals on the R5-232-C interface are not TTL
compatible, the transistor circuit connected between Transmitted
Data and the UART acts as a converter, generating the TTL
equivalent of the data signal for the UART.

The type of UART shown is a single, 40 pin IC. It was chosen
because the operating mode is set by connecting the control lines
either high or low. Other types of UARTs require a command word
to be written to an internal register which controls the mode,
something the C¥512 is not capable of doing. The type of UART
shown is made by several manufacturers, and is readily available.
The mode control lines should be connected so that the operating

mode of the UART matches that of the host system. This is very
important in getting data transmitted properly to the CY¥51Z.

Whenever the UART receives a character, the data available line
(DAV) goes high. This signal runs I/0 REQUEST, indicating to the
CY¥512 that a command character is ready. As the CY512 reads the
character, the INSTROBE signal is used to put the character onto
the C¥512 data bus, by controlling RDE, which brings the received
data lines (RD1l to RDB) to their active state. BUSY/READY,
connected to RDAV, then resets the DAV signal, clearing the I/0
REQUEST. Thus, the standard signals from the UART fully
implement the two-line data transfer handshake used by the C¥512Z.

The rest of the circuitry is a baud rate generator. It creates
the clock rates needed to operate the UART at most of the common
data transfer rates. The 7404 and crystal circuit is an
oscillator which runs at 2.4576 MHz. This frequency is an exact
multiple of the popular baud rates used. The CD4040 is a CMOS,
twelve stage counter. It takes the 2.4576 MHz clock rate and
divides it through twelve binary stages, creating one half the
frequency of the preceeding stage in each case. The outputs are

75

labeled with the resulting data baud rate, although the actual
signal frequency is sixteen times this rate. The clock inputs of
the UART should be connected to the desired rate. It will do an
internal divide by sixteen, generating the data rate needed by
the interface.

%EiK
iﬁﬂ g2

T 1=NoParity 0= Parity
122 StopBits 0+ I Stop Bit
0, 0 =5Bit/thar. 0,1 =& Brt/Char
1, 0=TBit/cChar. 1,1:8 Bﬁ.-i'm{
1 = Even Parity 0= Odd Parity

2.4576 MHz 20pF

COMMECT CLDCKS
FOR DESIRED
BARUD RRTES

Figure 10.15 RS-232-C Interface Schematic.

16

RS5-232-C TRANSMIT/RECEIVE INTERFACE WITH CY232

The CY232 Parallel/Serial Network controller enables the user to
both transmit and receive data from the CY512 parallel device via
a serial RS5-232-C port. The actual CY232 to CYS51l2 interface is
very easy as shown in the schematic below. However, since the
CY232 gives the user the ability to address multiple devices on a
network, the CY232 address lines should be tied high or low to
provide the CY¥512 with a specific address, and this address
should be used when writing to the CY232/CY512. Also, multiple
CY512s can be addressed this way by preceding each with a
separate CY232 with a different address or by connecting multiple
CY512s to a single CY¥232. 1In the second case, the CY¥232 address
decoding logic should be combined with the CY232 DAV to generate
a unique I/0 REQUEST for each CY512 (see also Figure 10.9). The
CY232 manual gives complete details on this interface.

W
R5-232<C RxD Bavj 2] I/0 RequEsT
LiME
" ™D Ak P Hpusy/RDY
=W | 2\ oserecr
Cvy232 , CY512
ADDR
LINES DBy DATA BUS DBy -4 MOTOR DRIVER
&TC. 4 CONTROL

Figure 10.yy C¥512 connections to CY23Z.

ADDENDA

PROM STAND-ALONE INTERFACE DESIGN

When the C¥512 is to be used in specific applications, with fixed
commands or a small number of different programs, the user may
eliminate the need for a keyboard, which is prone to typing
errors, and the need for a computer, which may not be justified
for the application. By programming the CY512 commands into a
PROM or EPROM, a stand-alone design may be generated, in which
the program may be selected by switch position, and a push button
is used to get things going. The BUSY/READY signal from the
CYS512 is used to advance the address counter of the PROM, and the
hardware automatically loads the commands, one byte at a time,
until the end of the program is reached. The end of program then
inhibits further program loading until the procedure is restarted
by setting the address to the front of a program again.

The circuit shown in this section is started by selecting the
desired program starting address for the PROM. With the 74193
counters, any address may be chosen by setting the counter inputs
and pulsing the load signal low. The schematic shows the load
signal controlled from the C¥512 RESET, but a separate load
switch could be used. The outputs from the counters control the
address inputs to the PROM. Each address corresponds to a single
C¥512 command character, so the PROM should be organized as eight
data outputs per address. Many popular PROMs and EPROMs are
organized this way, including 2708s, 2508s, and 6309-1s. Enough
address lines must be provided to access the number of bytes
regquired by the program or programs. The design shows eight
lines, allowing for 256 bytes, but more could be added by simply
cascading additional 74193s.

When the starting address is loaded, the PROM will output the
first command byte to the CY¥512, so the data bus will have the
byte ready when the CY¥512 reads it. When the C¥512 becomes
ready, with a high level on the BUSY/READY line, the 7400 nand
gate generates a low output to the CY¥512 I/0 REQUEST line. This
will tell the C¥512 that a command byte is available. The C¥512
will read the byte from the data bus and then go busy, indicated
by a low level on the BUSY/READY line., This will generate a high
level on I/0 REQUEST, indicating that the byte transfer has been
completed. The same signal also clocks the 74193 counters,
advancing the PROM to the next byte location, and putting the
next command byte on the data bus., When the C¥512 has finished
processing the last command byte, it will go ready again,
generating another I/0 REQUEST, and causing the CY¥512 to read the
next command byte.

The above procedure continues until the PROM address reaches a
value at which the data byte output is all bits high, OFFH. This
will generate a low output from the 7430, which will keep the
CY¥512 READY signal from generating another I/0 REQUEST. The
circuit stops clocking at this point, and stays frozen with I/0
REQUEST high and the 74193 counters set at the address which
contains the OFFH byte wvalue. No more bytes will be transferred

77

until the address is changed by another load pulse to the 74193.
This means that the user must end the program to be loaded into
the CY512 with a byte containing the OFFH. Note that the OFFH is
not read into the C¥512, it is only used to stop the circuit from
advancing any further. Since OFFH is not a legal ASCII
character, it may be used to end the program without fear that
such a value might be part of the program, so long as the C¥512
is operated in the ASCII mode. If the CY512 must be operated in
the Binary mode, and the program to be lcaded must contain an
OFFH data wvalue, some other means of stopping the program must be
found. 1In this case, the best approach would detect the end of
program by a unique address from the 74193 counters., This would
require the user to place the program in the PROM so that the
last program byte occurs at the address just before this end of
program address. Note that the same logic now used will work if
the last address is OFFH. 1In this case, the 7430 inputs connect
to the 74193 outputs instead of the data bus. The last byte of
the program should be at location 0FEH, one before OFFH, since
the byte at location OFFH would not be read by the C¥512. With
this scheme, the starting address of the program would depend on
the length of the program, and must be set properly before the
load pulse is given to the 74193, The design shown in the
schematic allows the starting address to be fixed, with the end
indicated by the OFFH data byte wvalue.

Figure 10.16 PROM Stand-alone Interface

78

I I COMPUTER CONTROL OF CYa12 I 1

COMPUTER CONTROL OF CY512

The ability to control all of the CY512 control inputs and
monitor all of the CY512 outputs allows the designer to exercise
the maximum control over the device. The following sections
present information that may be used as a guide to interfacing
the C¥512 to a computer wia the use of programmable I/0 devices
such as the Intel 8255. The programs are written for the 8080
microprocessor, but the general scheme will, of course, work with
any computer using two parallel 8-bit output ports and one
parallel 8-bit input port. For Verify mode, the data bus port
may be bidirectional, or replaced by a tri-statable output port
and another input port. The setup is as shown below:

sy §TaTUS
‘

Figure 11.1 Example setup for Test/Display/Control of C¥Y512
Stepper Controller.

By using a loop in the host computer {or in the C¥512) the user
can achieve a repetitive operation of the C¥512 that allows easy
display of CY512 signals on a standard oscilloscope. The use of
externally triggered horizontal sweep circuits to synchronize the
scope display is particularly convenient. The MOTION COMPLETE
(INT REQ 1) output (C¥512 pin 37) and the PROGRAMMABLE OUTPUT
{pin 34) serve well as external triggers.

ENTER/QUIT PROGRAMMING MODE

A key feature of the C¥512 is the capability to accept and
execute sequences of instructions; i.e., stored programs. The
device powers-up in the "Command” mode of operation in which
valid instructions are executed as they are received. If the
ENTER command, "E", is given, the device initializes the relevent
{internal) pointers and prepares to accept the program entered.
All commands received prior to the receipt of the "Q" command are
stored in the program buffer in the order in which they are
received. Each command is entered just as in the command mode;

79

that is, the opcode is entered followed by either the "Linend"
character "}" (carriage return) or a delimiter and parameter

string terminated with the ")".

The only command NOT terminated

with a Linend (0DH) is the QUIT command, "Q"=51H. The Linend

should not be used immediately following the "Q" character. The
escape (QUIT) command terminates the program entry mode of
operation, and returns the system to the command execution mode.

The maximum efficiency in use
of the CY512 may be gained by
presetting parameter wvalues
before entry and execution of

1)

=

SOFTWARE
the program. All parameter IMITIALIZATION
values have their own storage ”Eﬁzﬁfm
registers, so they need not LOADING
occupy program buffer space, £)
if the values stay constant :
during program execution. The :
host program may treat the a)

CY¥512 program as a "Co- -
routine"” that can be passed a R}

set of parameters and invoked E-?

via the DOITNOW command. The Nn

host can then sample the RUN Pp

output (pin #32) or utilize E%ﬁnéﬂsg
this output in an interrupt £0-ROUTINE
mode to detect program D) BY HOSTS
completion and load new > BY LOADING HEW
parameters or programs, as eyt
appropriate. This mode of oF phocRAN | EXECOTION
operation is particularly well COMPLETION VIA"DD T HOW"
suited for inclusion in multi- Mmm

tasking systems, when two or gﬁgﬁm

more CY512s are controlled by an&wéﬁ%u’:r

a single host.

Fig. 11.2 €¥512 used as "co-routine"

CY512 STAND-ALONE APPLICATIONS

The CY¥512 receives data and commands from an 8-bit data bus. The
source of data in most cases will be from an ASCII keyboard
during prototype development and a microcomputer in the final
system. The C¥512, of course, does not know or care where the
commands and data actually come from. This means that as long as
the handshake protocol is properly implemented, the commands can
be stored in a ROM, PROM, or EPROM and can be seguenced to
control the CY¥512 with no host processor at all. For certain
limited repertoire machines and stand-alone applications, this
may be a very practical solution. A conceptual diagram of this
type of system is shown in Figure 11.3. See also PROM Stand-
Alone Interface Design in section 10.

80

WRITE
STROBE
CIRCUITRY

R

= 11/0 ReQUEST

DATA BUS

CY512

= 1 Busy/RDY

Figure 11.3 The CY¥512 can receive commands and data from a ROM
sequencer for many stand-alone applications not
requiring a host microcomputer.

PROGRAMMING EXAMPLES

The following pages illustrate several programming examples,
including waveforms and program listings. Programs are all
written in 8080 Assembly Language, but the comments should allow
those readers who are not familiar with the 8080 to understand
what the wvarious subroutines are doing. The programs were used
on an SDKB0 board, with the C¥512 included in the wire wrap area.

We start with an equate table, indicating how the C¥512 was
connected to the SDK80 I/O signals. The names assigned to the
various signals are used in the other routines. The table is
followed by a Binary mode example, with the data buffer,
BINBUFFER, showing the exact data bytes sent to the C¥512 in this
program. All bytes except the OFFH at the end of the table are
sent by the SENDPARALLEL program, which is shown next. This
routine implements the basic data transfer between the SDK80 and
the CY512, illustrating an example of the handshake protocol
needed to transfer the bytes. It may be used in either Binary or
ASCII mode. The ASCII mode example, which follows the
SENDPARALLEL program, sends the same commands to the C¥512 in
ASCII mode as the Binary mode example shown previously, with
ASCIIBUFFER containing the ASCII data bytes sent by this program.
Finally, another Binary mode example is used to generate a
repeating oscilloscope waveform.

81

i

ABLE mmnzsmnss

e R B o I R T

b i o i, e R A e R BRI,

The C¥512 is connected to 8255-A4 ports 0ECH

to 0OEEH on the Intel SDK8B0 beoard.

i
= LEDS

[T O | I [

= AACNTRL

= TERMIN
= NOTERM

= TRIGGER
= STPINH

L

; EQUATE TABLE
EQU

EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQO

EQU

IOREQ EQU
NOIORED EQU 1

PROGBAR
BITOUT
READY
DIRECT
SLEW

IOSELIN EQU 2
IOSELOUT EQU 3

DOWHILE EQU 4
NGLDOP_ EQU 5

EQU 6
EQD 7

EQU 8
EQU 9

ABORT
NOABORT

EQO
EQU

¥
LOWATIT
HIWAIT

EQU
EQU

&
RESETLO
NORESET

EQU
EQU

EQU

OF5H

sTESTING LEDS ON PORT B=F5H

;PASS

:FAIL

:IN PROGRESS

;PORT A IS DATA BUS ON A4
;C¥512 STAT READBACK ON PORT B

;BO~~MOTION COMPLETE
;Bl-~PULSE OUTPUT

v
.
:

PORT B {DEDH)

;B2-~RUN MODE PIN

;B3—-~-PROGRAM MODE PIN
;B4-~-PROGRAMMARLE OUTPUT
iB5—~BUSY/READY PIN
;B6--DIRECTION INDICATOR PIN
;B7--5SLEW INDICATOR PIN

;CY¥512 INPUTS RUN FROM PORT C

;C0-~LOW I/O REQUEST
;C0-~HIGH FOR NO REQUEST

;Cl-~LOW FOR COMMAND INPUT
;Cl-~1/0 SELECT HI FOR VERIFY

;C2-~LOW DOWHILE TO LOOP
;C2-~-HIGH FOR NO LOOP

;C3-~TERMINATE STEP IF LOW

;C3--HI FOR NORMAL STEP TIMING

;C4--LOW FOR ABORT
;C4-~HIGH FOR NORMAL STEPPING

;C5-~LOW TO ALLOW STEPPING
;C5-~HIGH STEP INHIBIT

;C6—=LOW ON WAIT PIN
;C7--HIGH ON WAIT PIN

jC7-~-HARDWARE RESET ON LOW
iC7-~-HIGHE TO RUN CY¥512

;ASCII CARRIAGE RETURN CODE

BZ55 PI0

82

PORT ¢ (DEEH)

8255 PI0

PORT B (OF5H)

= MOTICHCOMPLETE
— PULSE

— RUN

(— PROS MODE
= PROG OUTPUT
r— BUSY /READY
— DIRECTION
pa—— SLEW INDICATOR

—a= /i) REGHUIEST
—1/0 SELECT
= [} WHILE
—= TERMINATE
—== ABORT
—== STEP INHIBIT
= WAIT

—= RESET

DBg
- DB
e [5
-t DBy
et [

'.-"m?

=== PSS (GREEN)
= FAIL {RED)

| TEST MPEOGRESS

—= A1/ B

TSI

BINARY DATA PROGRAMMING EXAMPLE

The binary data mode is illustrated by the programs and timing
diagrams that follow:

TESTBINARY:
00a8 11C200 LXI D,BINBUFFER
00ABR CDDT700 CALL SENDPARALLEL

F

RDYERROR:
00AE DBED IN STATUS
00BO E620 ANI READY
00B2 C2EB03 JHE ERROR ;FALSE READY

F

TSTINTREQL:
00B5 DEED IN STATUS
00B7 E601l ANI MOTION
00B9 CAAEOOQ JZ RDYERROR
00BC 3E0L MVI A ,GREEN
00OBE D3F5 ouT LEDS
Q0CO C3A800 JMP TESTBINARY

BINBUFFER:
00C3 4300 DE 'C',0 :CLEAR CY512 PIN 34
00C5 4200 DE 'B',0 :SET PIN 34 HIGH
00C7 5201Cc8 DB 'R',1,200 ;SET RATE = 200
00CA S301FE DE 'S',1,254 ;SET SLOFE = 254
00CD 460101 DB 'F',1,1 ;SET FACTOR = 1
Qop0 4E020500 DB 'N',2,5,0 :SET 5 STEPS
00D4 4700 DB 'G',0 iGO FOR 5 STEPS
00DE6 FF DE 0OFFH ; STOPPER

In the command mode, the
BUSY /RDY output remains low
after a GO command is received
until the CY¥512 finishes the
last o©of the "N" steps
specified. This is indicated
by the END-of-MOTION (INTREQL)
output (pin 37). The RDY line
returns high approximately 30
microseconds after the INTREQ1
goes low. INTREQ]l rises when
the next command is sent to
the CY51Z.

-8 m b eeid i) RN

BusyY/RDY

Figure 11l.4 End-of-Motion Timing.

83

e N B BN

@ B @

c
”““ﬂu] L || send 'C',0,'B',8 in

BINARY command mode

o Use
200
PROGRAMMABLE OUTPUT I g K ol i I/0 REQUEST to

trigger scope display
of Programmable Output
Figure 11.5 Binary Timing Example. (pin 34)

HANDSHAKE SUBROUTINE

The parallel ASCII data is sent to the CY¥512 Stepper Motor
Controller using the 8080 SENDPARALLEL code shown below. In this
system the I/0 REQUEST strobe is generated via a separate
programmable control line and is removed after the data is
acknowledged by the CY¥512.

éEHDPARﬂLLEL: ;ROUTINE TO SEWD COMMAND BYTES TO CY¥512

;DE = POINTER TO BYTE STRING, OFFH IS STOPPER
00D7 1a LDAX D :GET NEXT BYTE FROM BUFFER
00D8 FEFF CPI OFFH ;IS8 IT STOPPER?
00DA C8 RZ :RETURN IF STOFPER, ALL BYTES SENT
00DE 13 INX W] sUPDATE POINTER
00DC 4F MOV C,A
00DD CDE300 CaLL SENDCHAR :S5END THIS BYTE TO C¥512
00E0 C3D700 JMP SENDPAFALLEL ;KEEP LOOPING TIL STOPPER
SENDCHAR: ;OUTPUT CHAR IN C TO C¥512
00E3 DBED IN STATUS
00ES EB20 ANI READY ;LOW IFP BUSY
00E7 CAE300 J2 SENDCHAR sWAIT FOR READY
DOEA 79 MOV A,C
DO0EB D3EC oUT DATA :PUT CHAR ON DATA BUS
DOED 3EQ0 MVI &, IOREQ
D0EF D3EF our AACNTRL ;LOWER I/0 REQUEST, DATA IS AVAIL
F
WAITBSY:
DOFl DBED IN STATUS
D0F3 E620 ANI READY
00F5 C2F1l00 JNZ WAITBSY sWAIT FOR BUSY (C¥512 GOT DATA)
00F8 3E01 MVI A,NOIQREQD
00FA D3EF oUT A4CNTRL :RAISE I/0 REQUEST

00FC C9 RET

Figure 11.6 Example command output subroutine.

84

ASCII DATA PROGRAMMING EXAMPLE

MOTIOMN
ComPL

e M i e g

BUST/ROY l

PROG OUT __11xnﬁsg;r__

Figure 11.7 Expanded

Handshake Timing Diagram.

CpBJR 200} S 254} F I} N S) G}

1170 Y

1

PULSE

| E

MOTISN COMPLETE

PROG QUT ‘ I

Figure 11.8 Complete

Timing for Sample Program.

TESTASCI

0132 FF DB OFFH

I: JASCII MODE

0OFD 111801 LXI D,ASCIIBUFFER

0100 COD700 CALL SENDPARALLEL ;SEND THE COMMANDS IN THE BUFFER
RDYLOOP:

0103 DBED IN STATUS

0105 EE20 ANI READY

0107 C2E803 JNZ ERROR ;SHOULD BE BUSY STEPPING

010A DBED iﬂ STATUS

010C E601 ANI MOTION

010E CAD301 J2 RDYLOOP ;WAIT FOR MOTION COMPLETE

0111 3E01 MVI A,GREEN

0113 DIF5 OUT LEDS :LIGHT GREEN LED

0115 C3FDOO TMP TESTASCII :LOOF FOR SCOPE DISPLAY
ASCIIBUFFER: ;COMMAND STRING FOR CY512

0118 430D DE 'C',CR ;CLEAR PROGRAMMABLE OUTPUT (PIN 34)

011a 420D DE 'B',CR JPIN 34 HIGH

01llc 52203230 DB 'R 200',CR j3ET BATE = 200

300D
0122 3203235 DB 'S 254',CR ;SET SLOPE = 254
340D
Q128 46203100 DB 'F 1',CR 1SET FACTOR = 1
0l2c 4BE20350D DB 'W 5',CR ;SET FOR 5 STEPS
Q130 470D DB 'G',CR }30 FQR 5 STEPS

;STOPPER FOR SENDPARALLEL ROUTINE

Figure 11.9 Sample pr

ogram.

85

OSCILLOSCOPE DISPLAY EXAMPLE

RESET u

MOTIOM
COMPLETE

PROG OUT

_‘

USRI

CORIFSIFFFI ZENZS B +D GO

WLLL

PULSE

Figure 11

-10

W

—""'i 2m3EL I-—

Timing for Program Shown Below.

The 8080 (or equivalent) sends the following commands and binary
data to the C¥512:

== reset CY512 using pin 4
el n clear programmable output (pin 34)
{used to trigger scope display)
'R' 1 FEH set rate parameter = OFEH
's' 1 FFH set slope parameter = 0FFH
" r 3 set rate factor = 2
'HN' 2 5 0 set number of steps = 5
'+ 0 set CW direction (redundant)
'G' 0 begin stepping

After sending the above commands, the host computer polls the

MOTION COMPLETE output (pin 37) and,

upon finding it active,

after the 5th step has been taken, the host delays a fixed time
interval and then loops back, resets the C¥512 and repeats this
The programmable output may be used to trigger an
oscilloscope.

process.

9

—= PULSE 1
= BUSY/RDY
—*-Hﬂnﬂ&lJ

TRIGGER

CY512 PROGRAMMABLE OUTPUT

Figure 11.11 Test Setup.

86

1 2 |EEE-488 INTERFACE l 2

IEEE-488 INTERFACE

Using only a few SSI TTL gates, the CY¥512 can be made to work as
a "LISTENER" on the IEEE-488 or GPIB (General Purpose Interface
Bus). This section describes the timing and control involved in
the GPIB interface and identifies the C¥512 signal names with the
appropriate GPIB signals, This implementation represents a
simple GPIB interface. If a more complete bus interface is
required, especially in a multi-instrument environment, the user
should employ a separate GPIB interface device between the C¥512
and the bus. This would allow the user to assign device
addresses and communicate in both directions, using the C¥512
Verify mode. A suitable GPIB interface device would be
Fairchild's 96LS488.

GPIB HANDSHAKE SIGNALS

The "TALKER", or device desiring to send 8 bits of data to the
CY512 over the data bus, uses the DAV (Data AVailable) signal
that corresponds to the I/0 REQUEST line on the C¥512., Before
lowering the DAV line, the TALEER must test the NRFD (Not Ready
For Data) line., This line corresponds to the CY512 BUSY/RDY
line. When this line is low, the LISTENER (CY¥512) is Not Ready
For Data. When the TALKER finds the NRFD line high, it can
assert {(lower) its DAV write line to the C¥512. Thus far, the
interface is identical to the standard CY¥512 handshake. The
third handshaking signal is an acknowledge line from the listener
named NDAC (Not Data ACcepted). This line must initially be low
and is raised to indicate that the data has been accepted by the
C¥512, The NDAC line is tested by the TALKER to determine
whether or not the LISTENER has accepted the data. The C¥512
BUSY/RDY line actually acknowledges the data transfer by going
low, thus by inverting the RDY line, an NDAC signal can be
generated. This completes the three line handshake required for
the GPIB.

5 1/0 REQ

RDY CY512
e | BUSY/RDY

Figure 12.1 CY¥512/GPIB Interface.

87

DATA LINES |f——————- -(5 B csaan
FALSE P\
DAV (DATA A Ci) @
AVAILABLE) | [TRUE
y JEALSE R
iy
NOT READY | breuc !
FOR DATA) @ bl Do
FALSE
NDAC U ~
(NOT DATA TRUE _ ~ @: RRLC . W
ACCEPTED) ‘T (e (i
ks L R |
T Tz _%.u-#i +5 Te T B T Mo Ty

Figure 12.2 GPIB Handshake Signals.

The flowchart for the TALEER that controls the C¥512 is shown in

Figure 12.3.

microprocessor and describes the manner
interface devices function.

TALKER

PUT NEW DATA'
ON D10 LINES
I (_mo)

DELAY FOR DATA
TD SETTLE

SET DAY LOW

MOAC LINE STA\'E_L_D'I.:l_UH_m. '&L‘R_EEEIU RS

== == T AVE ACCERTED DATA

THE DATA 15 Tu_ﬁ_c_g@gn_&nﬂﬂm
=== T TAFTER THIS TIME

YES
SET DAV HIGH

Figure 12,3

88

This procedure can be implemented simply using any

in which most GPIB

LISTENER

ACCEFT DATA
SET NDBL HIGH

SET NDAC LOW

TALKER/LISTENER handshaking procedure.

GPIB INTERFACE MANAGEMENT SIGNALS

In addition to the three line handshake, there are several other
control lines defined by the IEEE-488 interface specifications.
These are described below and identified with appropriate CY512
signal lines.

RESET (pin 4)

Rl
‘*4 "—-lﬂﬂ msec

Interface Clear goes low after power on. This line is
used to reset the CY¥512 and can replace the power on
startup circuitry.

SRQ MOTION COMPLETE
L or RUN

#1...END OF MOTION
#211 o"-%_ RUH

Service Reguest is used to inform the TALKER that the
LISTENER (C¥512) has completed an action and is ready
for more commands.

ATN = I/0 REQUEST=DAV
LT Lps 170 REQUEST
— ATN }—{pin 1)

The Attention line is used to signify that the data on
the bus is a device address. For multiple C¥512s this
may be used for selection. The ATN line should inhibit
the CY512 I/0 REQUEST line. Note that ATN may also be
used to prevent the CY512 from seeing line feeds (0AH)
sent after linends (0ODH) as is done by many BASIC
language controllers. ATN may also be used to inhibit
other interface commands to which the CY512 cannot
respond.

89

IEEE-488 TALKER SENDS CY512 STEPPER MOTOR
COMMANDS TO C¥512 CONTROLLER RECEIVES
COMMANDS

DEVICE ATH
ADDRESS | DATA
(-']_;—) DAV !
NRFD BUSY/RDY
P 77
NDAC | ﬁr,q
G iNT REG 1
. 3
\EC RESET
%
DID 1-8 <DATA BUS - INVERTED BY INTERFACE CY5 12
12-19 |

Figure 12.4 Simple IEEE~4B8/CY¥512 Interface.

In some systems the REN (Remote ENable) and EOI (End Or Identify)
IEEE-488 control signals may be useful. For further information
on the IEEE-488 interface the reader is referred to the following

references:

IEEE STANDARD 488 - 1978
available from
IEEE Service Center

445 Hoes Lane
Piscataway NJ 08854 USA

PET and the IEEE 488 BUS
by Fisher and Jensen, 1980
Osborne/McGraw Hill
630 Bancroft Way
Berkeley CA 94710 USA

90

GPIB SCHEMATIC EXAMPLE

The following pages illustrate the logic used in an actual
project which connected the CY¥512 to the IEEE-488 bus, using the
Fairchild 96L5488. The schematics indicate general data flow,
handshake control logic for bidirectional data transfers, and
interrupt logic to control stepping and detect when a limit has
been reached. Such a design supports many functions of the GPIB,
and allows several CY512s or other GPIB instruments to reside on
the same bus. This design is included with the permission of
Christopher R. Hansen of the Mayo Foundation.

S —
_J"-Jf/ ji/ i

TXST

Ij0 REGUEST

BUSY/RDY __________1 = 3
TXRDY [

Figure 12.5 Timing for Talker addressed.

100 MHZ
1AL
{0r
4. TKE
=
I C 1S B E M_H
FA0 L1514

q -Iusmr

Figure 12.6 Clock and Reset Logic

The figure above shows the implementation of the clock inputs for
both the CY512 and the 96LS488 from a single crystal, and a
manual reset. It also shows the timing for the handshake
circuits when the CY¥512 is asked to output its values from a
Verify command.

91

sV sy gy

MDE PR R e
47K

ADDRESS s e Ls04 oas

parls] 220

44
£;’ oy

B o7
fé;:h:-' T [E]
i i
ggﬁ 39
o
. -
- -
R
%iﬁg 32 |
i
i
i
v 4 o
e CW LIMIT
CCwW LT
—_ _Ra&s
= —_— UNUSED

Figure 12.7 Data Paths

The data path schematic illustrates general data flow between the
GPIB, the 96L5488, and the CY¥512. All control signals from the
GPIB connect directly to the 96LS488, which interprets the
bus commands and controls the handshake logic to the CY512. The
eight data lines connect to the 96LS488, and through 74L5240
buffers to the C¥512. The buffers invert the data signals
between the C¥512, which uses positive logic, and the GPIB,'which
uses negative logic. Two modes are used to read back information
from the CY¥512. To read the internal parameters, using the
Verify mode, a normal GPIB read operation is performed, by making
the 96LS488 and C¥Y512 the bus talker. To read back the states of
various C¥512 control lines, the 96L5488 is asked to perform a
status read as a result of a poll command. Note that any eight
of the CY¥S512 signals may be connected to the status port.
Internal CY¥512 data and the status information are multiplexed by
the 74LS157.

92

1K L500
LS00 i, RO g I
: : }—
: | T_
: Ls27
; «id i NREG
i |
| |
1
LS04 1500 ; , ! LS04
_1>o_3 : 1
H |
: .. N 4
LS04
p 0
1508
= Le.zn. L o
DUTREQ
1504) -]
S b 1
1 I
: i Lso8
l |
I I
'[i |
I LSETS I
| |
: :
] i #5ET LSI23
ot soomon A FOR 2 mSEC
15123 PULSE
.ﬁl—-}
& .
LS04

Figure 12.8 Handshake Control Logic

The handshake control logic is the key to connecting the C¥512 to
the 96LS488. This logic converts the appropriate signals between
the simple handshake of the C¥512, and the more complex handshake
performed by the 96LS488. By combining the wvarious signals from
the 96LS488, the proper values for I/0 Select and I/O Reguest are
generated. Much of this logic distinguishes between the Listen
mode (sending commands to the C¥512) and the Talk mode {sending
data from the C¥512). This enables the Verify command to be use
with the GPIB design. The CY¥512 Busy/Ready signal is used to
complete the handshake between the CY¥512 and the 96LS488.

93

il

CwW LimiT

100pF)

-ﬂIﬂF -I LS04 i D’—‘—— |

| LSSl , LS00
b ¥ T :
CCW LIMIT ,' i LS00
L]

1K

P

D
1274

CLlk &

Figure 12.9 Interrupt Logic

The interrupt logic illustrates two functions. 1In the first, the
GPIB may be used to control the start of stepping. The 96LS488
Trig, CLR, and MR signals are combined and connected to the C¥512
Step Inhibit. This allows the GPIB master controller to stop any
stepping operations by issuing a Device Clear command. Stepping
may also be synchronized to other events by allowing the master
to start the stepping using a Device Trigger command. The second
function of the interrupt logic is to monitor the stepping
operation, and warn the master controller when a limit has been
reached. By monitoring the limits, a Service Reguest can be
generated when a limit is reached. The Step Inhibit is also
controlled by this process, keeping the CY¥512 from inadvertently
stepping too far. BService Requests are also generated by the
C¥512 Motion Complete signal.

94

I 3 GETTING YOUR CY512 RUNNING 1 3

The following checklist will simplify getting your C¥512 up and
running.

1.
2.
3.
4.

2.
10.

11.

12.

Connect pins 7 & 20 to ground and pins 26 & 40 to +5 volts.

Be sure that pin 39 is low and pin 6 is high.
Set pin 36 high (ASCII mode), set pin 30 low for now.

Be sure RESET (pin 4) is low for at least 10 milliseconds
after power stabilizes, The CY¥512 can be reset at any time.

Upon proper reset all ocutputs should be at legic 1 (»3V).
Observe the RDY line (pin 27) to be sure it is high.
Observe CLK/15 (pin 11 [[Tl 400 KHz with 6 MHz Xtal).

Place the "CLEARBIT" command "C" (=43H) on the data bus.

DB

DB?_
DB

DB%
DBy
DB5
DBE
DB?

T | | T O T [Y 1
O OO0 O

Lower the I/0 REQUEST line (pin 1).

Wait for RDY (pin 27) to go low before bringing I/0 REQUEST
high. 1If using I/O REQUEST strobe circuitry that generates
a low write signal when an ASCII character is placed on the
bus, be sure that your software detects low RDY line (Busy)
before looking for High RDY. If you are using a debounced

keyboard this should not be a problem.

When I/0 REQUEST is brought back high, RDY will return high.

Wait for RDY to return high before placing the RETURN code
()=0DH) on the data bus,

pin 12... DB
)
DB
DB§
DB
Dﬂg
DBg

pin 19... DB7

nn

o 00 O O =

¥]
(8]

13.

14,

15.

16.

17.

18.

19.

20.

Generate the low I/0 REQUEST strobe until RDY goes low, then
return I/0 REQUEST high, as before.

Upon completion of the above seguences of steps, the
Programmable Qutput (pin 34) will go low.

Repeat steps 8 through 13, replacing "C" (=43H) with "B"

{(=42H). This "BITSET" command will cause the Programmable
OQutput {pin 34) to return high. All other outputs (except
RDY) should have remained high during the above procedure.

Repeat steps 8 through 13, replacing "C" (=43H) with "-"
(=2DH). This is the "CCW" command. The result of this
command will be to bring the DIRECTION Line (pin 33) low.

Following the CCW command with a CW command ("+" =2BH) will
again raise the DIRECTION line.

If you have reached this point successfully you should be
able to enter any of the commands and obtain the correct
responses.

Suggested sequences:

a. enter "E}" followed by "Q" and observe the PROG (pin 31)
go low with "E)}" and return high with "Q".

b. with STEP INHIBIT (pin 30) low, enter "A}" followed by
"P 1}". The STEPPER MOTOR DRIVE SIGNALS, pins 21-24,
will be activated, and PULSE, pin 35, will go low and
return high, indicating the duration of the step. The
drive signals will change from step to step as the above
sequence is repeated.

¢c. raise the STEP INHIBIT line and enter the single step
sequence as in "b" above. ©Nothing will happen on PULSE,
or the stepper control lines, until the STEP INHIBIT
line is lowered.

d. refer to Figures 10.12, 10.13, and 10.14. Enter these
commands as listed and observe the outputs. Wote that
LEDs on the relevant outputs are very useful.

After initial checkout is accomplished using ASCII input,

the user may place pin 36 low to select Binary. Read the
manual carefully for differences in the two modes.

96

I

Abort 13,15,29,43,44,46

Absolute 9,10,26,31,42
--gee Position command

Acceleration 10,18,23,
52-58

Architecture 9

ASCIT 16-18,31,36,85

Athome 10,1%,20,26

Binary 16,17,31,32,36,83
Bipalar Driver 66

Bitset 19,20,41

Buffer 10,29,30,33-36
Busy/Ready 11,12,16,40,68
Bytes 34

C

Chip Select 70

Cireuit 11,26,44,58,60,
h2, 64-66,69,70,76,78,
91-34

Clearcbit 19,20

Clock 16,62

Clockwise 9,19,24,42

Closed Loop 59

Command Mode 19,25,31,33,
iB

Commands 17-20,34

Computer 3%,7%9%,82-85

CoRoutine 80

Counter 9,81

Counterclockwise 9,19,25,
42

Crystal 16,50,61

D

Data Bus 14,13,15

Data Count 32

Deceleration --see
Acceleration

Demonstration System 11,
63,64

Direction 10,12,15,42

Doitnow 19,20,26

Dowhile 16,27,28

pDriver 11,12,65

E

Electrical 61

Encoder &0

Enter 19,20,79

Eguate Table 82

Execute --see Doltnow
and Go commands

Expend 19,24

External Contrel 26-2B,
58 ,60,62,69

F

Factor 19,21,51-53,58
Five-phase motor &5
Full Step 31,47

G

Go 10,1%,21
GPIB B7-96

INDEX
H

Halfstep 19,21,31,47

Handshake 11,12,40,68,
84,37

Home ==-ge2 Athome

1/0 Reguest 11,12,15,.40,
68-580

1/0 Select 12,15,40

IEEE-488 Bus B7-96

Initialize 19,21,26,62

Input 9,13,16

Instrobe 16,40

Instructlons 17-19,26,
—-—sge also Commands

Interface 1315,36,63,64,
87,89

J

Jump 19,21,26,29

K

Eeyboard 19%,21,26,29

Kit &3
L

Language 17

Latch 26

Logic 61

Loop 19,22,26,27,28,30

Modes 10,31

Motion Complete 14,15,54

Motor Interface 12,26,
63-65

Wumber Command 10,19,
22,42

Offset 19,22,47,48
Operational Modes 31
Oscilliscope 86
Cutput 9,13,16
Outstrobe 16,40

P

Parallel 38

Parameter 18,34

Fhase 12,15,47,48,65

Pins 14-16

Pogition 10,19,22,26,42

Powar 61

Prog Pinm 16

Program Mode 27-31,33

Program Storage --—see
buffer

Programmable output 14,
15,41 --see alsc Bitset
and Clearbit

Programs 27-30,33,59,
T1,72,74

PROM 77,80

Protocol 11,12

Prototype system 11,63,64

Pulse 12,15,26,43

97

Q

Quit 19,23,79
Query --see Verify

R

Ramp —-—see hoceleration

Rate 19,23,49,51,53

Rate Eguation 49

Rate Tahle 50

Read-0Out 37 —-see Verify

Ready/Busy 11,12,16,40,68

Registers 35

Relative Position 9,10,
31,42 --see alsoc Number
command

Reset 15,26,62

R5232 75

Run 14,16,26,41

S

Schematics -—see circuits

Serial 75

Signals 61

Slew 14,16,52,54,58

Slope 1%,23,52-54 --see
also Acceleration

Stand-alone 77,80

Step Inhibit 13,16,31,
42-44

Step Rate --3ee Rate

Step Timing 43,47

Stop 45

Storage --see Buffer

Synchronization 12,70,71

T

Temperature 6l

Terminate 13,15,43

Three-phase motor 65

Til 19,23,27

Timing 41-44,46,54,55,68,
¥0,72,73,83-86,91

Translator Driver &5

Trigger --see Step
Inhibit

Tri-S8tate 40,61

Troubleshooting 95

U

Uact 76
Unipolar Driver 66
Uﬂtil 1912‘r37

vV

Verify 19,24,37

w

Wait 13,15,19,24,28

Waveforms, motor 12,47,
48,73

Write strobe &8

X

X --see Expend
Xtal 16,50,61

Z

Zero 33,38 --see also
Command Mode

ASCII-DECIMAL TO HEX CONVERSION TABLE

DEC HEX DEC HEX DEC HEX DEC HEX |. DEC HEX ASCITI HEX
0 00 51 33 102 66 153 99 204 cC CR 0D
101 52 34 103 67 154 9A 205 CD SP 20
2 02 53 35 104 68 155 9B 206 CE + 2B
3 03 54 36 105 69 156 9C 207 CF , =
4 04 55 37 106 6A | 157 9D 208 DO - 2D
5 05 56 38 107 6B 158 9E 209 D1
6 06 57 39 108 6C 159 9F 210 D2 0 30
7 07 58 3a 109 6D 160 A0 211 D3 1 31
8 08 59 3B 110 6E 161 Al 212 D4 - 2 32
9 09 60 3C 111 6F 162 A2 213 D5 3 33

10 0OA 61 3D 112 70 163 A3 214 D6 4 34
11 OB 62 3E 113 71 164 A4 215 D7 5 35
12 0C 63 3F 114 72 165 A5 216 D8 6 36
13 0D 64 40 115 73 166 A6 217 D9 7 33
14 OE 65 41 116 74 167 a7 218 DA 8 38
15 OF 66 42 1LT 78 168 A8 219 DB 9 39
16 10 67 43 118 76 169 A9 220 DC
17 11 68 44 119 77 170 AA 221 DD A 41
18 12 69 45 120 78 171 aB 222 DE B 42
13 13 70 46 121 79 172 AC 223 DF C 43
20 14 71 47 122 7A 173 AD 224 EO D 44
21 15 72 48 123 7B 174 AE 225 El E 45
22 16 73 49 124 7C 175 AF 226 B2
23 17 74 4A 125 7D 176 BO 227 E3 P46
24 18 75 4B 126 7E 177 Bl 228 E4 G 47
25 19 76 4C 127 7F 178 B2 229 EB5 H 48
26 1A 77 4D 128 80 179 B3 230 E6 1 49
27 1B 78 4E ‘129 81 180 B4 231 E7 J 4A
28 1cC 79 4F ©130 82° 181 BS 232 E8.
23 1D 80 50 |-131 83 182 B6 233 E9 K 4B
30 1B 81 51 | 132 84 183 B7 234 EA L 4C
31 1F 82 52 133 85 184 B8 235 EB M 4D
3220 83 53 134 86 185 B9 236 EC N 4E
33 21 84 54 135 87 . 186 BA 237 BED O 4F
34 22 85 55 136 88 187 BB 238 EE
35 23 86 56 137 89 188 BC 239 EF P 50
36 24 87 57 138 8A 189 BD 240 FO Q0 51
37 25 88 58 139 8B 190 BE 241 Fl R 52
38 26 89 59 140 8C 191 BF 242 F2 S 53
39 27 90 SA 141 8D 132 CO 243 F3 T 54
40 28 91 5B ‘142 8E 193 C1 244 F4
41 29 92 5¢ 143 8F 194 c2 245 F5 U 55
42 22 93 5p 144 90 195 C3 246 F6 v 56
43 2B 94 SE 145 91 196 C4 247 F7 W 57
44 2C 95 SF 146 92 197 C5 248 F8 X 58
45 2D 96 60 147 93 198 C6 249 F9 Y 59
46 2E | 97 61 148 94 199 C7 250 FA Z SA
47 2F 98 62 149 95 200 c8 251 FB
48 30 99 §3 150 96 201 c9 | 252 FC
49 31 100 64 151 97 202 CA 253 FD
50 32 101 65 152 98 203 CB 254 FE

255 FF

CYB-002 MULTI-PURPOSE CONTROL BOARD

A general purpose prototyping board is available which will allow
the user to easily interface his computer, keyboard, or CRT to
his contreol application. The CYB-002 board comes ready to
assemble as a kit, with the capability of accepting any two
Cybernetic Micro Systems control chips in any combination. Thus
the board can become a dual axis stepper controller, waveform
synthesizer, programmable controller, printer controller, data
acqguisition controller, and the like, with very little additional
effort. BSupport software will alsoc be available soon.

The core of the CYB-002 is Cybernetic's new Local System
Controller, the C¥250, which accepts ASCII commands, and
addresses either of the two target chips via a pass-through mode,
or accepts the data as direct commands to its own program buffer.
Since the CYB-002 is wired to accept an optional EEPROM, then
once programmed, it may also operate as an independent system.
The board has additional circuitry for an optional LCD display
and CY300 display controller, and for a network mode via the
CY232. The C¥232 will give the user the option of stringing
boards together in a network with each having the ability to
address up to 256 devices.

User definable switches and LEDs are available for various input
and output signals, and an additional wire-wrapping area allows
the user to customize the board to his particular application--in
the case of the C¥Y512, this ecould include the motor driver
circuitry. While the board was designed as a prototyping aid for
implementing the C¥xxx family of chips, many users find that it
is the ideal solution to their control problems. The CYB-002 is
available with a variety of options: Display with CY300, Network
with CY¥232, Memory with EEPROM, Keyboard, and Target with any

CYxxx, as shown in the figure below:

VME CONNECTORS NOT INCLUDED.
P g

1L

6.3”

LCD DISPLAY

C * I-I -II-I.T .I._l'
KIT SHOWMN ASSEMBLED WITH DISPLAY,
MEMORAY, AND NETWORK OPTIONS,

Figure 10.xx CYB-002 Multi-purpose Control Board

ADDENDA

EEPROM STAND-ALONE INTERFACE DESIGN

The CY250 Local System Controller will allow the user to
interface the CY512 to an EEPROM for easy storage of often used

programs and for a stand_ alone system. A The CY250 accegts serial
Oor parallel commands and can address either of two CY¥512s via a
pass-through mode, or accepts data as direct commands to its own

program buffer. Alternately, the command sequences may be
defined once and sent to the EEPROM, where the various command

sequences are stored as named procedures, with the CY250 taking
care of the EEPROM opperation, space allocation, and name
directory. This allows frequently used programs to be remembered
by name and recalled whenever they are needed. For stand-alone
operation, the CY250 has an "auto recall" feature which calls a
specified routine from the EEPROM on power up or reset. This
EEPROM interface has been implemented on the CYB-002 board shown
in figure 10.xx. More details on the EEPROM interface may be
found in the CY250 manual and the CYB-002 manual.

PARALLEL INTERFACE SERIAL INTERFACE
To HOST

i — g

) @ o243
| CY512
" tveso E:
i
&)
5 EEPROM e [e—
] e [ED
3
% cysiz2

Figure 10.zz CY512 interface to EEPROM through CY250.

ADDENDA

