

Operation of Several CY550s Using a Common Data Bus

In systems where multiple CY550s are to be controlled by a host computer it is possible
to use one eight-bit port to establish a common data bus for sending instructions to the
CY550s. Each of the separate BUSY lines (pin 15 of each CY550) must be monitored
individually and each IO_REQUEST line (pin 13) must be activated separately. This
technique effectively uses the I0_REQUEST line as a chip select (CS). A CY550 will
ignore all bus information if its IO_REQUEST line is inactive.

This case would not allow programs to be executed from local external memory, since
each CY550 data bus must be isolated to allow access to the external memory. Access
to local external memory must be disabled by grounding each chip’s XMEM_SEL line.

e | ls;ﬁw*ﬁmﬁ%m S s R
me Hnst 8-BIT | pataBus | .
Processor | /O i z
Y
CYS550x CY5502

I/O Request < |/O REQy
Lines I/O REQz

Separate {IID REQx —— ¥

Figure 19.10 CY550s share common data bus by using separate /O REQUEST lines
for chip select.

19-11

Synchronization of Two CY350s

Two CY550s, executing similar programs from external memory, may be synchronized
as shown in Figure 19.11. The master controller can control a USERBIT line of the
slave CY550 via the Bit command, to set or clear a user bit. The slave CY550is started
first, with an Execute command, and executes a Wait command and waits until the
USERBIT line is driven low by the Bit command executed by the master CY550, when
it receives the (second) Execute command. Both CY550s then proceed to the next
instruction and are synchronized as shown in
Figure 19.11a, to within several tens of
| microseconds. Note that when the two

PULSE; ' programs are not identical, the master can
also use a Wait command, while the slave
PULSE2 executes its own Bit instruction, to achieve a

more general synchronization.
—»{ <b0usec |&—

a.) Timing Diagram
Master Slave
Program Program
USRB1 USRB2 Bi<cr>— W2=cr>
USRB:z e USRB+
CY5501 CY5502
Identical Programs
b.) Hardware c.) Software
Figure 19.11 Synchronization of two CY550s.
Coordination of Several CY550s

Multiple CY550s may be synchronized to each other by use of the programmable User
Bits, the Wait commands, Til commands, and time delays. These may also be combined
with other signals, such as CCW, SLEW, or STOPPED, used to select the point in the
motion when the signal is presented to the waiting controller. Consider a general parts
handling function in which the part must be handed off between two controllers. The
geometry of the parts and the arms used to carry the parts requires that the hand off be
carefully synchronized between the two controllers. The one to receive the part waits

19- 12

at the receiving position until the CY550 which has the part signals that it has arrived.
The two arms then move together in a coordinated motion, reaching a point at which
the distance between them is a minimum. The part is exchanged and the arms move
apart, again in a coordinated motion. Once a certain position is reached, the arms are
free to move independently, and continue with their assigned programs. If the motion
is repetitious, both controllers can work with the same program, always being
resynchronized at the hand off, The following program illustrates such a motion.

e
A 0<cr> Declare current position as home
R 200<cr>
S 225<cr> Define stepping parameters
F a<cr>
P 14<cr> Move to the receiving position
V<er> Wait for end of motion -

Y 50<cr> Set external memory address

i

—

Iy

E<cr> Define hand off program @

W 16<cr> Wait for a part to arrive, User Bit 0 low

P 0o<er> Arms move together to handoff position

+<er> Change direction after motion is over

B 17<cr> Activate mechanism to transfer part, User Bit 1 low
D s0<cr> Delay for part to actually transfer

P 14<cr> Move apart, back to receiving position

V<eors Wait for end of motion

D 80<cr> Delay for part to stabilize, arms apart o5
P 108<cr> Transport part to next handoff position o)
V<er> Wait for end of motion «

B 18<cr> Low User Bit 2 indicates part arrived

P 122<cr> Move together with receiving arm

V<er> Wait for end of motion

B 1<cr> Release mechanism which holds part

D 80<cr> Delay for part transfer to receiving arm

P 108<cr> Move apart, back to receiving position
V<eor> Wait for end of motion

D 80<cr> Delay for part to stabilize, arms apart

R 1600 <cr> Change step rate to slower rate :

P O0<cr> Move empty arm back for next part O
P 14<cr> Stay at the receiving position

R 200<cr> Change rate back to faster rate
T 3,50<cr> Repeat program if User Bit 3 low
0<cr> Else stop program

Q<cr> End of program
Y 50<cr> Reset starting address
X<or> Execute program

Figure 19.12 Synchronized part transfer example.

19-13

Example Programs and Waveforms

The use of the "loop TIL" instruction is illustrated in the following example. The
program loops until the USERBIT 1 line (pin #22) goes high, then fetches the next
instruction. The effect of the INHIBIT ABORT input on the STOPPED output is also

shown.

s L[L[L[L[

PULSE (#1)

INHIBIT_ABORT (48)

UskBo [#21) -
T
b]
USRB1 {(#22) . ot @U
308 ‘©od B \ead \®o ﬁm@m
PRESET:
B 16<cr> clear USER BIT 0 line
R 250<cr> set RATE = 250
S 200<cr> set SLOPE = 200
F 2<er> set FIRSTRATE = 2
N 3<cr> set NUMBER steps = 3
Y 100<cr> set memory address
ENTER PROG:
E<ecr=
B O<cr> set USER BIT 0
PROGRAM +<er> set CW direction
CODE G<eor> GO, begin stepping
Ve<er> Wait for end of motion
B 16<cr> clear output line
-<or> set CCW direction
Ge<er> GO, begin stepping
V<por> Wait for end of motion
T 1,100<cr=> repeat above prog Til USER BIT 1 = HI
B O<cr> set USER BIT 0 line
B 16<cr> clear USER BIT 0 line
O<cr> stop run mode, enter command mode
QUIT: Q=<cr>
EXECUTE: Y 100<cr= reset pointer
X<er> EXECUTE

Figure 19.15 Timing and Control for Program Entry and Conditional Looping.

19- 14

ASCII and Binary Data Programming Examples

The following command sequence illustrates a simple motion with trigger signals. First
we toggle USER BIT 0, then we set the stepping parameters, and finally take five steps.
In the ASCII command mode, the command sequence is as follows:

B 16<cr=> USER BIT 0 low

B o<cr> USER BIT 0 high

R 220<cr> set Rate

S 240<cr> set Slope

F d<cr> set First Rate

N 5<c¢r> set Number of steps
G<er> take five steps
V<eor> Wait for end of motion

If the same sequence is issued in the Binary command mode, the command letters are
the same, but the data values are given to the CY550 in binary form, not as ASCII
decimal values. In the Binary command mode, the equivalent sequence is:

42 01 10 USER BIT 0 low

42 01 00 USER BIT 0 high
5202 DC 0D set Rate 220

5301 F0 set Slope 240

46 01 04 set First Rate 4

4E 03 05 00 00 set Number of steps §
47 00 take five steps

56 00 Wait for end of motion

All values are listed as their hexadecimal equivalents, but are sent to the CY550 as
single 8 bit data values. Command letters have the same codes as in ASCII, but
parameters require a count, followed by the binary parameter value. Notice that
multi-byte parameters are sent least significant byte first.

The resulting waveforms are shown below. The CY550 behavior is the same in both
ASCII and Binary modes, but the number of data bytes sent to achieve the results is
different. Also, Binary mode commands will execute somewhat faster, since the CY550
converts ASCII parameter values into a binary format internally, taking additional
command execution time.

CY550 B 16) B 0) R 220) S 240) F 4} N5} G}
FULSE (%])

N
L,

STOPFPED (#3)

USRBE (#21) | ,
0 1 2 3
TIME IN MILLISECONDS

4

Figure 19.16 Example motion waveforms.

19-15

Getting Your CY550 Running

The following checklist will simplify getting your CY550 up and running.

1. Connect pin 20 to ground and pins 31 & 40 to + 5 volts.

2. Be sure RESET (pin 9) is high for at least 10 milliseconds after power stabilizes,
The CYS550 can be reset at any time.

3. Upon proper reset, all outputs should be at logic 1, and the CY550 should be testing
the JOG signal (pin 6).

4, Observe the crystal frequency divided by 6 on ALE, pin 30.

The following steps may be used with the Parallel Command Interface.
5. Place the "+" command on the data bus, ASCII value 2Bh

Do=1
D1=1
D2=0
D3 =1
D4a=0
D5 =1
D6 =0
D7 =0

6. Lower the IO_REQUEST line, pin 13.

7. Wait for the BUSY line to go low before bringing IO_REQUEST high again. BUSY
is pin 15.

8. When IO_REQUEST is brought back high, BUSY will return high.

9. Wait for BUSY to return high, then place the carriage return code on the data bus,
value 0Dh

nwn

98888898
OO0 = = =

LI I [T T

10. Generate the IO_REQUEST handshake strobe again, interacting with the BUSY
signal.

11. Upon completion of the above sequence, CCW (pin 2) will go low.

The following steps may be used with the Serial Command Interface.

12. Connect your serial port to the CY550 RxD and TxD signals, pins 10 and 11, with
the proper voltage translation buffers. CTS may also be connected, and is recom-
mended, if your system can support it.

13. Send two carriage return codes to adapt the CY550 baud rate. The CRT emulation
program at the end of this section is useful for this purpose.

14, Send the command "+ <c¢r>",
15. The CCW signal (pin 2) will go from high to low.

16. Repeat the above command sequence with a "- < cr >" command. The ASCII code
for "-" is 2Dh. The CCW signal will return high when this command is sent.

If you have successful parallel or serial communications....

17. If you reach this point successfully, yon are commanding the CY550, and should
be able to enter any command and obtain the correct response.

18. Suggested sequences:

a. Try to toggle a User Bit signal using"B0<cr>"and "B 16 <cr>" for
pin 21. Remember the single space between the command letter and
parameter value.

b. Change the stepping parameters, using the R, F, S, and N commands,
then try stepping with "G <cr>".

¢. Refer to examples in this manual for other command sequences.
19. After the initial checkout, use your own command sequences as required by the

application. You may need to exercise the external memory interface, extended I/O
circuits, or an external display.

20-2

BASIC Language CRT Emulation Program

The following BASIC language program emulates a CRT for direct serial communica-
tions with the CY550. It starts by sending the two carriage returns to set the CY550
baud rate. CTS monitoring is enabled and used by the serial port driver. The program
is a simple terminal emulator, which takes any command entered from the keyboard
and sends it to the CYS50, while also displaying any serial data sent by the CY550.

100 BASIC Language

110 CRT EMULATOR FOR CYS550

120 Cybernetic Micro Systems, Inc.

130

140 This program configures the CY550 for serial commands,
150 by sending two carriage returns to set the adaptive

160 rate.

170 ' It then becomes a terminal emulator, waiting for keyboard

180 input, which it displays on the screen and sends to the
180 CY550, while displaying all serial characters received
200 from the CYS550.

210

300 CLS

310 LF$=CHRS (10) : CR$=CHR$ {(13) : NL$=CHR$ {0) : ES$=CHRS$ (27)
20 -

330 Open the COM1 serial port at 9600 baud, no parity

340 ° Note that CTS is also enabled

350"

380 OPEN "COM1:9600,N,8,1,CS30000,D050,CD0" AS #1

370’

380 ' Send two carriage returns to adapt the CY550 baud rate
390’

400 PRINT #1,CR$;CRS;

410 '

500 LOCATE 5,5,1

510 PRINT "Ready to Gol"

520 '

530 ' Open the screen for displays
540 '

550 OPEN "SCRN:" FOR OUTPUT AS #2
560 °

570 ' Check for keyboard input. Display and send any
580 ' keys to COM port. Stop when Escape key input
590 °

600 A$=INKEY$: IF A$=ES$ GOTO 900

610 IF AS< >""THEN PRINT #1,AS; : PRINT #2A$%:

820

m ¥

640 ° Check for any received data from COM port, and

650 ° display it, with line feeds filtered out. Loop back

660 ' to check keyboard again when no more received data
870 '

680 WHILE NOT EOF(1)
890 J%=LOC(1) : B$=INPUT$(J% #1) : LF%=0
700 LF%=INSTR(LF%+ 1,B$,LF$)

20-3

710 IF LF%>0 THEN MID$(B$,LF%,1)=NL$: GOTO 700
720 PRINT #2,BS;

730 WEND

740 GOTO 600

750 '

900 ' Exit program when Escape key is pressed

910 '

920 CLOSE #1 : CLOSE #2

930 STOP

20-4

Stepper Motor Controller

Selection Guide

CY CY CY Cy CY Cy CYy Cy Cy CY
500 512 525 545 550 Function 500 512 525 545 550 Funclion
2K 5K 10K 27K 20K Max Usable Step/Sec Motor Support
64K B4K 64K 16M 16M Max Number of Steps e« e e e Pulse& Direction Output
29 25 26 28 38 Number of Instructions *® e @ 4-phase Output
18 48 60 64K 64K Program Storage (byles) *® & e O o 2-phase Compatible
Exp Exp Lin Lin Lin Accel (Exponent/Linear) O o o o 3-phase Compatible
e @ e O o 4 phase Compatible
Command Interface o o 0 o 5-phase Compatible
e e Seral Interface e« o o o o FulStep
e« e o o ¢ Pamlelinterface e e o 0 o HalfStep
e e e e e BinaryData Structure o o o Quad Step
e e e @ e ASClData Structure 0 o Micro Step
¢« o Internal Stored Program e ©0 o e e SingleStep (Jog Mode)
e o PExternal Stored Program o 0 e e e Continuous Stepping
e e o e o Direct Command Mode e ¢ o o o ConstantRate stepping
@ Thumbwheel Input Support e & e ¢ o Ramped Stepping
e e [External Display Support ¢ e Low Power Standby
) e o Stand Alone Operation e e Motor On/Off Output
0 © o e e LimitDetection
Program Features
e o o o ListProgBuffer Contents Motion Features
¢ o o o Display# of Steps Param © o e e e Programmable Start Rate
¢ o e » DisplayAccel Parameter e« o e o o Progammable Slew Rate
e e e +# DisplayStepRate o o e e e Program. Accelfdecel Slope
e« o e o Display Current Position e o o o @ SoftwareDirection Control
e e Display Val of Ext Inputs ® o o o Automatic Direction Finding |
e Display Motor Status ¢ e o o e Program. Num of Steps
e e e e o StoredProg Execution e o Home Seek Command
e e e e s Conditional Prog Structure e e e o e AbsolutePosition Stepping
e o o o o Progammable Time Delay e e o o o Relative Numof Steps
256 256 64K 64K Program Repetition Count e e e o o EmergencyStop/Abort
e« ¢ e o Unconditional Branch . @ @ e Decelerating Stop/Abort
1 1 1 16 16+ Programmable I/O Lines e e o o e Steplnhibitinput
e Extended /O e 0O Closed Loop Rate Contral
Program Labels [e e External Direction Control
e o e @ & Muticontroller Sync e e e o o Motion Complete Incicator
¢ e e LiveCmds During Prog Exec ¢ e e # Slewindicator
e Live Cmds while Stepping e e e o o ProgComplete Indicator
¥ ® e External Jog Mode
S ¢ On-the-Fly Rate Change
e Yes 2 e On-the-Fly Position Oufput
o To a Degree or with Additional Work ¢ On-the-Fly Cmd Execution

Pulse/

CcCw
Stopped
CW_Limit/
CCW_Limit/
Jog

Slew/
Inhibit_Abort/
Reset

RxD

TxD

CTs/
10_Request/
Xmem_Sel/
Busy/

WR/

RD/

Xtal2

Vss

CY550 Pins

Vece (+5v)

Do

D1

D2

D3

D4

D5

D&

D7

Test

ALE

Reserved
USRB7 (HP_SEL)
USRBG& (FFL/DTRY)
USRBS

USRB4

USRB3

USRB2

USRB1

USRBO

CY550 Summary

CY550 Commands

At current step position

user Bit set or clear

Continuous Step mode

Delay milliseconds

Enter External memory prog

Firstrate

Go, step relative

Home seek

Initialize

J a Jump to address

Ka Set read pointer addr

L ¢.a Loop to addr for count

M a Set write pointer addr

N n Number of Steps

0o Mode

P p Position for stepping

Q Quit entering to external mem

R+ Rate max

5 s Slope of accel/decel

T b,a Til bit matches, loop to addr

U reserved

V Wait for step to finish

W b Wait for bit match

X eXecute external commands

Y a external memory addr pointer

Z ¢ ZillionLoop to addr for count

+ CW direction

- CCW direction

/ MNegate or clear bit values

?emd Query command parameter

0 Stop execution of ext memory
Wait number of steps

] Wait for position match

-~ Stop maotion

v Set I/O byte register value

I Read from mem to I/O byte reg

% Write from I/O byte reg to mem

[2.6.dHP-LED command string

oa

—

—IOmMmoQOm>
= a

